Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018;46(sup2):397-407.
doi: 10.1080/21691401.2018.1458033. Epub 2018 Apr 12.

Phelligridin D-loaded oral nanotube titanium implant enhances osseointegration and prevents osteolysis in rat mandible

Affiliations
Free article

Phelligridin D-loaded oral nanotube titanium implant enhances osseointegration and prevents osteolysis in rat mandible

Ji-Eun Kim et al. Artif Cells Nanomed Biotechnol. 2018.
Free article

Abstract

Poor bone quality and osteolysis are the major causes of implant failure in dentistry. Here, this study tested the effect of phelligridin D-loaded nanotubes titanium (Ti) for bone formation around the dental implants. The purpose of this study was to enhance osseointegration of phelligridin D-loaded implant into the bone for bone formation and prevention of osteolysis. Cell viability, crystal violet staining, Western blot, alizarin red S staining, alkaline phosphatase activity, tartrate-resistant acid phosphatase staining, micro-computed tromography (μ-CT), hematoxylin and eosin (H&E) and immunohistochemical staining were used in vitro and in vivo to test the biocompatibility of phelligridin D. Phelligridin D enhanced osteoblast differentiation and mineralization by increasing bone morphogenic protein-2/7 (BMP-2/7), Osterix, Runx-2, osteoprotegerin (OPG), alkaline phosphatase and inhibited osteoclast differentiation by decreasing receptor activator of nuclear factor kappa-B ligand (RANKL) in MC-3T3 E1 cells. Further, phelligridin D promoted bone regeneration around nanotube Ti implant surface by increasing the levels of BMP-2/7 and OPG in a rat model. Phelligridin D also inhibited osteolysis by suppressing the expression of RANKL. These findings strongly suggest that phelligridin D is a new compound representing a potential therapeutic candidate for implant failure caused by osteolysis and poor bone quality of teeth.

Keywords: Drug delivery; MC-3T3 E1 cell; implant failure; osteoblast differentiation;; osteoporosis.

PubMed Disclaimer

MeSH terms

LinkOut - more resources