Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2018 Apr 12;13(1):63.
doi: 10.1186/s13014-018-1009-y.

In regard to "Tran A, Zhang J, Woods K, Yu V, Nguyen D, Gustafson G, Rosen L, Sheng K. Treatment planning comparison of IMPT, VMAT and 4π radiotherapy for prostate cases. Radiation oncology. 2017 Jan 11; 12(1):10"

Affiliations
Comment

In regard to "Tran A, Zhang J, Woods K, Yu V, Nguyen D, Gustafson G, Rosen L, Sheng K. Treatment planning comparison of IMPT, VMAT and 4π radiotherapy for prostate cases. Radiation oncology. 2017 Jan 11; 12(1):10"

Biplab Sarkar. Radiat Oncol. .

Abstract

This article describe the three dimensional geometrical incompetency of the term "4π radiotherapy"; frequently used in radiation oncology to establish the superiority (or rather complexity) of particular kind of external beam delivery technique. It was claimed by several researchers, to obtain 4πc solid angle at target centre created by the tele-therapy delivery machine in three dimensional Euclidian space. However with the present design of linear accelerator (or any other tele-therapy machine) it is not possible to achieve more than 2πc with the allowed boundary condition of 0 ≤ Gnatry position≤πc and [Formula: see text]≤Couch Position≤[Formula: see text] .This article describes why it is not possible to achieve a 4πc solid angle at any point in three dimensional Euclidian spaces. This article also recommends not to use the terminology "4π radiotherapy" for describing any external beam technique or its complexity as this term is geometrically wrong.

Keywords: 3D Euclidian space; 4π radiotherapy; Couch; Gantry; Linear accelerator; Radian; Sold angle; Solid geometry; π.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not required, no patient data/ information Involved.

Consent for publication

Not required, no patient data/ information Involved.

Competing interests

The author declares that he/she has no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Comment in

Comment on

References

    1. Tran A, Zhang J, Woods K, Yu V, Nguyen D, Gustafson G, Rosen L, Sheng K. Treatment planning comparison of IMPT, VMAT and 4π radiotherapy for prostate cases. Radiat Oncol. 2017;12(1):10. doi: 10.1186/s13014-016-0761-0. - DOI - PMC - PubMed
    1. Dong P, Lee P, Ruan D, Long T, Romeijn E, Yang Y, Low D, Kupelian P, Sheng K. 4π non-coplanar liver SBRT: a novel delivery technique. international journal of radiation oncology* biology*. Physics. 2013;85(5):1360–1366. - PubMed
    1. Dong P, Lee P, Ruan D, Long T, Romeijn E, Low DA, Kupelian P, Abraham J, Yang Y, Sheng K. 4π noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors. International journal of radiation oncology* biology*. Physics. 2013;86(3):407–413. - PubMed
    1. Rwigema JC, Nguyen D, Heron DE, Chen AM, Lee P, Wang PC, Vargo JA, Low DA, Huq MS, Tenn S, Steinberg ML. 4π noncoplanar stereotactic body radiation therapy for head-and-neck cancer: potential to improve tumor control and late toxicity. International journal of radiation oncology* biology*. Physics. 2015;91(2):401–409. - PubMed
    1. Yu VY, Tran A, Nguyen D, Cao M, Ruan D, Low DA, Sheng K. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery. Med Phys. 2015;42(11):6457–6467. doi: 10.1118/1.4932631. - DOI - PMC - PubMed