Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Apr 16;11(1):248.
doi: 10.1186/s13071-018-2729-4.

Recovering parasites from mummies and coprolites: an epidemiological approach

Affiliations
Review

Recovering parasites from mummies and coprolites: an epidemiological approach

Morgana Camacho et al. Parasit Vectors. .

Abstract

In the field of archaeological parasitology, researchers have long documented the distribution of parasites in archaeological time and space through the analysis of coprolites and human remains. This area of research defined the origin and migration of parasites through presence/absence studies. By the end of the 20th century, the field of pathoecology had emerged as researchers developed an interest in the ancient ecology of parasite transmission. Supporting studies were conducted to establish the relationships between parasites and humans, including cultural, subsistence, and ecological reconstructions. Parasite prevalence data were collected to infer the impact of parasitism on human health. In the last few decades, a paleoepidemiological approach has emerged with a focus on applying statistical techniques for quantification. The application of egg per gram (EPG) quantification methods provide data about parasites' prevalence in ancient populations and also identify the pathological potential that parasitism presented in different time periods and geographic places. Herein, we compare the methods used in several laboratories for reporting parasite prevalence and EPG quantification. We present newer quantification methods to explore patterns of parasite overdispersion among ancient people. These new methods will be able to produce more realistic measures of parasite infections among people of the past. These measures allow researchers to compare epidemiological patterns in both ancient and modern populations.

Keywords: Coprolite; Epidemiology; Overdispersion; Parasite; Quantification.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Graph derived from three examples of endoparasite overdispersion [23, 24]. Example A, a more marginal example of aggregation shows data for tapeworm infection (Triaenophorus nodulosus) in perch (Perca fluviatilis). In this example 54% of the tapeworms were in 18.5% of hosts with 81.5% uninfected or lightly infected. Example B shows pronounced overdispersion of the nematode (Porrocaecum ensicaudatum) in starlings (Sturnus vulgaris). In this case, 89% of the hosts are uninfected or lightly infected, and 69% of the parasites were recorded in 11% of the hosts. Example C shows a very pronounced case of overdispersion for nematodes (Spiroxys japonica) in pond frogs (Rana nigromaculata). In this case, 70% of the parasites were recorded in just 4% of the hosts while 88% of the hosts were uninfected and 8% had light infections.
Fig. 2
Fig. 2
Graph derived on pinworm eggs recovered from La Cueva de los Muertos Chiquitos coprolites [26]. The graph exemplifies pronounced overdispersion with 66 of 100 samples negative. The ten samples with the highest counts contained 76% of the eggs. This is most similar to example C in Fig. 1
Fig. 3
Fig. 3
Graph derived from pinworm infection data from Korean school children [27] (Fig. 1, trial 2). The data were collected in several anthelmintic “dewormings”. One of three treatments revealed a dispersed, negative binomial distribution: 72% of the worms were recovered in 13% of the subjects while 53% were uninfected

References

    1. Dittmar K, Reinhard KJ, Araújo A. The study of parasites through time: archaeoparasitology and paleoparasitology. In: Grauer A, editor. Paleopathology: a companion volume. Hoboken: Wiley/Blackwell Press; 2011. p. 170–90.
    1. Reinhard KJ, Araújo A. Synthesizing archaeology with parasitology in paleopathology. In: Buikstra JE, Roberts CA, editors. A global history of paleopathology. Oxford: Oxford University Press; 2012. pp. 751–764.
    1. Reinhard K, Bryant V. Pathoecology and the future of coprolite studies. In: Stodder AWM, editor. Reanalysis and reinterpretation in southwestern bioarchaeology. Tempe: Arizona State University Press; 2008. pp. 199–216.
    1. Fry GF, Moore JG. Enterobius vermicularis: 10,000-year-old human infection. Science. 1969;166(Suppl. 3913):1620. doi: 10.1126/science.166.3913.1620. - DOI - PubMed
    1. Moore JG, Fry GF, Englert E., Jr Thorny-headed worm infection in North American prehistoric man. Science. 1969;163(Suppl. 3873):1324–1325. doi: 10.1126/science.163.3873.1324. - DOI - PubMed

Publication types