Arsenic trioxide-mediated suppression of miR-182-5p is associated with potent anti-oxidant effects through up-regulation of SESN2
- PMID: 29662624
- PMCID: PMC5882315
- DOI: 10.18632/oncotarget.24678
Arsenic trioxide-mediated suppression of miR-182-5p is associated with potent anti-oxidant effects through up-regulation of SESN2
Abstract
Arsenic trioxide (ATO) is a traditional Chinese medicine that can induce oxidative stress for treatment of cancer cells. However, ATO may generate anti-oxidative responses to compromise the cytotoxic effect, but the underlying mechanisms remain unclear. Here we found that ATO could inhibit miR-182-5p expression in patient-derived primary S1 glioblastoma (GBM) cells accompanied by up-regulation of Sestrin-2 (SESN2) mRNA, a known anti-oxidant molecule. This phenomenon was also detected in a U87MG glioma cell line, human lung adenocarcinoma H1299 cell line and A549 cell line. Pretreatment with a free radical scavenger N-acetylcysteine (NAC) reduced the oxidative stress induced by ATO. Concomitantly, ATO mediated suppression of miR-182-5p and enhancement of SESN2 expression were also compromised. The MTT assay further showed that ATO induced cytotoxicity was enhanced by transfection of miR-182-5p mimics. Overexpression of miR-182-5p mimics significantly suppressed the expression of SENS2 and a firefly luciferase reporter gene fused to 3'- untranslated region (UTR) of SESN2 mRNA. Use of ribonucleoprotein immunoprecipitation (RNP-IP), ATO mediated suppression of miR-182-5p led to the stabilization of SESN2 mRNA as a result of Argonaute-2 (AGO2) dependent gene silencing. Furthermore, high expression of miR-182-5p and low expression of SESN2 mRNA tend to be associated with longer survival of glioma or lung cancer patients using public available gene expression datasets and online tools for prediction of clinical outcomes. Taken together, current data suggest that the miR-182-5p/SENS2 pathway is involved in ATO induced anti-oxidant responses, which may be important for the design of novel strategy for cancer treatment.
Keywords: anti-oxidant effect; arsenic trioxide; miR-182; oxidative stress; sestrin 2.
Conflict of interest statement
CONFLICTS OF INTEREST No potential conflicts of interest relevant to this article are reported.
Figures




References
-
- Cohen MH, Hirschfeld S, Flamm Honig S, Ibrahim A, Johnson JR, O’Leary JJ, White RM, Williams GA, Pazdur R. Drug approval summaries: arsenic trioxide, tamoxifen citrate, anastrazole, paclitaxel, bexarotene. Oncologist. 2001;6:4–11. - PubMed
-
- Zhang TD, Chen GQ, Wang ZG, Wang ZY, Chen SJ, Chen Z. Arsenic trioxide, a therapeutic agent for APL. Oncogene. 2001;20:7146–7153. - PubMed
-
- Zhu J, Chen Z, Lallemand-Breitenbach V, de The H. How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer. 2002;2:705–713. - PubMed
-
- Zhang TC, Cao EH, Li JF, Ma W, Qin JF. Induction of apoptosis and inhibition of human gastric cancer MGC-803 cell growth by arsenic trioxide. Eur J Cancer. 1999;35:1258–1263. - PubMed
-
- Akao Y, Nakagawa Y, Akiyama K. Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro. FEBS Lett. 1999;455:59–62. - PubMed
LinkOut - more resources
Full Text Sources