Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May;14(20):e1704332.
doi: 10.1002/smll.201704332. Epub 2018 Apr 17.

Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness

Affiliations

Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness

Zhe Wang et al. Small. 2018 May.

Abstract

To guarantee the normal operation of next generation portable electronics and wearable devices, together with avoiding electromagnetic wave pollution, it is urgent to find a material possessing flexibility, ultrahigh conductive, and superb electromagnetic interference shielding effectiveness (EMI SE) simultaneously. In this work, inspired by a building bricks toy with the interlock system, we design and fabricate a copper/large flake size graphene (Cu/LG) composite thin film (≈8.8 μm) in the light of high temperature annealing of a large flake size graphene oxide film followed by magnetron sputtering of copper. The obtained Cu/LG thin-film shows ultrahigh thermal conductivity of over 1932.73 (±63.07) W m-1 K-1 and excellent electrical conductivity of 5.88 (±0.29) × 106 S m-1 . Significantly, it also exhibits a remarkably high EMI SE of over 52 dB at the frequency of 1-18 GHz. The largest EMI SE value of 63.29 dB, accorded at 1 GHz, is enough to obstruct and absorb 99.99995% of incident radiation. To the best of knowledge, this is the highest EMI SE performance reported so far in such thin thickness of graphene-based materials. These outstanding properties make Cu/LG film a promising alternative building block for power electronics, microprocessors, and flexible electronics.

Keywords: electrical conductivity; electromagnetic interference shielding; films; large flake size graphene; thermal conductivity.

PubMed Disclaimer

LinkOut - more resources