Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul;15(7):443-458.
doi: 10.1038/s41571-018-0012-4.

Using biology to guide the treatment of sarcomas and aggressive connective-tissue tumours

Affiliations
Review

Using biology to guide the treatment of sarcomas and aggressive connective-tissue tumours

Armelle Dufresne et al. Nat Rev Clin Oncol. 2018 Jul.

Abstract

Sarcomas are a heterogeneous group of malignancies that arise from cells of a mesenchymal origin. Surgery forms the mainstay of the treatment of most patients with localized sarcoma and might be followed or preceded by chemotherapy and/or radiotherapy. In the metastatic setting, systemic treatments tend to improve survival and control symptoms. However, the adverse events and sometimes disappointing outcomes associated with these empirical approaches to treatment indicate a need for new approaches. The advent of next-generation sequencing (NGS) has enabled more targeted treatment of many malignancies based on the presence of specific alterations. NGS analyses of sarcomas have revealed the presence of many alterations that can be targeted using therapies that are already used in patients with other forms of cancer. In this Review, we describe the genomic alterations considered to define specific nosological subgroups of sarcoma and whose contribution to oncogenesis provides a biological rationale for the use of a specific targeted therapy. We also report several less successful examples that should guide researchers and clinicians to better define the extent to which the identification of driver molecular alterations should influence the development of novel treatments.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources