Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2018 Sep;107(9):778-787.
doi: 10.1007/s00392-018-1245-z. Epub 2018 Apr 17.

Underestimated prevalence of heart failure in hospital inpatients: a comparison of ICD codes and discharge letter information

Affiliations
Comparative Study

Underestimated prevalence of heart failure in hospital inpatients: a comparison of ICD codes and discharge letter information

Mathias Kaspar et al. Clin Res Cardiol. 2018 Sep.

Abstract

Background: Heart failure is the predominant cause of hospitalization and amongst the leading causes of death in Germany. However, accurate estimates of prevalence and incidence are lacking. Reported figures originating from different information sources are compromised by factors like economic reasons or documentation quality.

Methods: We implemented a clinical data warehouse that integrates various information sources (structured parameters, plain text, data extracted by natural language processing) and enables reliable approximations to the real number of heart failure patients. Performance of ICD-based diagnosis in detecting heart failure was compared across the years 2000-2015 with (a) advanced definitions based on algorithms that integrate various sources of the hospital information system, and (b) a physician-based reference standard.

Results: Applying these methods for detecting heart failure in inpatients revealed that relying on ICD codes resulted in a marked underestimation of the true prevalence of heart failure, ranging from 44% in the validation dataset to 55% (single year) and 31% (all years) in the overall analysis. Percentages changed over the years, indicating secular changes in coding practice and efficiency. Performance was markedly improved using search and permutation algorithms from the initial expert-specified query (F1 score of 81%) to the computer-optimized query (F1 score of 86%) or, alternatively, optimizing precision or sensitivity depending on the search objective.

Conclusions: Estimating prevalence of heart failure using ICD codes as the sole data source yielded unreliable results. Diagnostic accuracy was markedly improved using dedicated search algorithms. Our approach may be transferred to other hospital information systems.

Keywords: Data warehouse; Electronic health records; Heart failure; ICD coding; Information extraction.

PubMed Disclaimer

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Figures

Fig. 1
Fig. 1
Count of inpatients within the Department of Medicine I in the years 2000–2015. The solid line indicates all patients; each patient is counted once per year. Intermittent lines represent patients with heart failure identified using different automated heart failure detection algorithms: MExpert originates from the variable set pre-specified by the clinical expert; APrecision optimizes count of false positives; ASensitivity optimizes count of false negatives; AF1 optimizes overall accuracy (for details refer to“Methods”)
Fig. 2
Fig. 2
Detection of heart failure in inpatients using different approaches (percentage of all inpatients). The solid line indicates the prevalence detected when applying the automated algorithm AF1 (for details refer to “Methods”). Intermittent lines indicate detection using ICD codes or other information tags that dominantly contributed to the detection of heart failure. Each patient entered analysis only once per year; if patients attended the hospital multiple times, the first case of each patient per year was used
Fig. 3
Fig. 3
Detection of heart failure via related ICD codes (dark gray) and the additional detection through other search terms* (light gray), in inpatients with heart failure across the entire sampling period (years 2000–2015). The percentage of patients found via selective ICD code search increased in recent years, which might be explained by the foundation of the Comprehensive Heart Failure Center Würzburg in the year 2010, i.e., a facility devoted to the integration of research and care of patients with heart failure. *Executed via application of the automated algorithm AF1 (for details refer to “Methods”)

References

    1. Federal Statistical Office. http://www.gbe.de. Accessed Mar 2017
    1. Asakura K, Ordal E. Is your clinical documentation improvement program compliant? Health Financ Manag. 2012;66(10):96–100. - PubMed
    1. Pourasghar F, Malekafzali H, Koch S, Fors U. Factors influencing the quality of medical documentation when a paper-based medical records system is replaced with an electronic medical records system: an Iranian case study. Int J Technol Assess Health Care. 2008;24(4):445–451. doi: 10.1017/S0266462308080586. - DOI - PubMed
    1. Hall MJ, Levant S, DeFrances CJ (2012) Hospitalization for congestive heart failure: United States, 2000–2010, NCHS Data Brief (108), pp 1–8 - PubMed
    1. Schellenbaum GD, Heckbert SR, Smith NL, Rea TD, Lumley T, Kitzman DW, Roger VL, Taylor HA, Psaty BM. Congestive heart failure incidence and prognosis: case identification using central adjudication versus hospital discharge diagnoses. Ann Epidemiol. 2006;16(2):115–122. doi: 10.1016/j.annepidem.2005.02.012. - DOI - PubMed

Publication types

LinkOut - more resources