Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb;17(2):1008-17.
doi: 10.1166/jnn.2017.12670.

Surface-Modification of RIPL Peptide-Conjugated Liposomes to Achieve Steric Stabilization and pH Sensitivity

Surface-Modification of RIPL Peptide-Conjugated Liposomes to Achieve Steric Stabilization and pH Sensitivity

Yie Hyuk Kwon et al. J Nanosci Nanotechnol. 2017 Feb.

Abstract

We have previously demonstrated that RIPL peptide-conjugated liposomes (RIPL-L) exhibited high hepsin (HPN) selectivity and enhanced intracellular drug delivery. In this study, surface modification of RIPL-L was performed to reduce plasma protein adsorption and off-target effects. For steric stabilization, distearoyl phosphatidylethanolamine (DSPE)-polyethylene glycol (PEG)2000 was used (5% molar ratio to total lipid) to prepare PEG-RIPL-L. Further, pH-sensitive oligopeptides [(HD)4 or (HE)4] were coupled to shield the RIPL polyarginine moiety, yielding (HD)4/PEG-RIPL-L and (HE)4/PEG-RIPL-L. All liposomal vesicles had a narrow and homogenous size distribution of approximately 140–150 nm, with zeta potentials varying from −15 to 36 mV. Increased plasma stability was observed upon quantifying the protein adsorbed onto liposomes by using a micro bicinchoninic acid assay. The (HD)4- and (HE)4-coupling capacity of PEG-RIPL-L was investigated by measuring the amount of oligopeptide involved in transient ionic complexation (TIC-oligopep) and zeta potential changes. As the molar ratio of (HD)4 and (HE)4 increased, TIC-oligopep increased and zeta potential decreased. (HE)4/PEG-RIPL-L were pH-sensitive, producing 1.6-fold greater cellular uptake of FITC-dextran by LNCaP cells at pH 6.8 than at pH 7.4. This result suggested that (HE)4/PEG-RIPL-L might provide a sterically stabilized, pH-sensitive drug carrier for HPN-specific cancer targeting.

Keywords: Liposome; RIPL Peptide; Oligopeptide; pH Sensitivity; Targeting; Surface Modification; Cell Update; Hepsin; Nanocarrier.

PubMed Disclaimer

Publication types

LinkOut - more resources