Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 19;13(4):e0196064.
doi: 10.1371/journal.pone.0196064. eCollection 2018.

Can water-level management reduce malaria mosquito abundance around large dams in sub-Saharan Africa?

Affiliations

Can water-level management reduce malaria mosquito abundance around large dams in sub-Saharan Africa?

Solomon Kibret et al. PLoS One. .

Abstract

Background: Water level management has been suggested as a potential tool to reduce malaria around large reservoirs. However, no field-based test has been conducted to assess the effect of water level management on mosquito larval abundance in African settings. The objective of the present study is to evaluate the effects of water level drawdown rates on mosquito larval abundance.

Methods: Twelve experimental dams were constructed on the foreshore of the Koka Dam in Ethiopia. These were grouped into four daily water drawdown treatments, each with three replicates: no water-level drawdown (Group 1; Control), 10 mm.d-1 (Group 2), 15 mm.d-1 (Group 3) and 20 mm.d-1 (Group 4). Larval sampling was conducted weekly for a period of 6 weeks each in the main malaria transmission season (October to November 2013) and subsequent dry season (February to March 2014). Larval densities were compared among treatments over time using repeated measures Analysis of Variance (ANOVA).

Results: A total of 284 Anopheles mosquito larvae were collected from the experimental dams during the study period. Most (63.4%; n = 180) were collected during the main malaria transmission season while the remaining (36.6%; n = 104) were collected during the dry season. Larvae comprised four Anopheles species, dominated by Anopheles arabiensis (48.1% of total larval samples; n = 136) and An. pharoensis (33.2%; n = 94). Mean larval density was highest in control treatment dams with stable water levels throughout the study, and decreased significantly (P < 0.05) with increasing water drawdown rates in both seasons. During the main transmission season, anopheline larval density was generally lower by 30%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, compared with the control dams (Group 1). In the dry season, larval density was reduced by 45%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, when compared to the control dams.

Conclusion: Increased water drawdown rates were associated with lower mosquito larval abundance. Water level management could thus serve as a potential control measure for malaria vectors around reservoirs by regulating the persistence of shallow shoreline breeding habitats. Dam operators and water resource managers should consider incorporating water level management as a malaria control mechanism into routine dam operations to manage the risk of malaria transmission to human populations around reservoirs.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Schematic of the experimental dam.
Fig 2
Fig 2. Experimental dam.
Fig 3
Fig 3
Mean anopheline larval density in the four groups of experimental dams with different water drawdown rates during the dry and main transmission season: (A) main transmission season (October-November 2013); (B) dry season (February-March 2014). Vertical bars indicate standard error.
Fig 4
Fig 4. Anopheles vector larval abundance in experimental dams with different water drawdown rates.
(A) An. arabiensis during the main transmission season; (B) An. arabiensis during the dry season; (C) An. pharoensis during the main transmission season; (D) An. pharoensis during the dry season.

References

    1. World Bank. The water resources sector strategy An overview. Washington DC: The World Bank; 2004.
    1. World Commission on Dams. Dams and development: a new framework for decision-making. 2000. http://www.internationalrivers.org/resources/dams-and-development-a-new-.... Accessed 12 April 2016.
    1. African Union. Programme for Infrastructure Development in Africa. Addis Ababa: African Union; 2015.
    1. Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. A global boom in hydropower dam construction. Aquat Sci. 2015; 77: 161–170.
    1. Keiser J, Castro MC, Maltese MF, Bos R, Tanner M, Singer BH, et al. Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am J Trop Med Hyg. 2005; 72: 392–406. - PubMed

Publication types