Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Feb;95(2):231-240.
doi: 10.1111/cge.13365. Epub 2018 May 21.

Developmental disorders with intellectual disability driven by chromatin dysregulation: Clinical overlaps and molecular mechanisms

Affiliations
Review

Developmental disorders with intellectual disability driven by chromatin dysregulation: Clinical overlaps and molecular mechanisms

L Larizza et al. Clin Genet. 2019 Feb.

Abstract

Advances in genomic analyses based on next-generation sequencing and integrated omics approaches, have accelerated in an unprecedented way the discovery of causative genes of developmental delay (DD) and intellectual disability (ID) disorders. Chromatin dysregulation has been recognized as common pathomechanism of mendelian DD/ID syndromes due to mutation in genes encoding chromatin regulators referred as transcriptomopathies or epigenetic disorders. Common to these syndromes are the wide phenotypic breadth and the recognition of groups of distinct syndromes with shared signs besides cognitive impairment, likely mirroring common molecular mechanisms. Disruption of chromatin-associated transcription machinery accounts for the phenotypic overlap of Cornelia de Lange with KBG and with syndromes of the epigenetic machinery. The genes responsible for Smith-Magenis-related disorders act in interconnected networks and the molecular signature of histone acetylation disorders joins Rubinstein-Taybi-related syndromes. Deciphering pathway interconnection of clinically similar ID syndromes may enhance search of common targets useful for developing new therapeutics.

Keywords: chromatin dysregulation; gene networks; intellectual disability syndromes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources