Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 7;500(3):589-596.
doi: 10.1016/j.bbrc.2018.04.109. Epub 2018 Apr 24.

Long noncoding RNA HAGLROS regulates cell apoptosis and autophagy in lipopolysaccharides-induced WI-38 cells via modulating miR-100/NF-κB axis

Affiliations
Free article

Long noncoding RNA HAGLROS regulates cell apoptosis and autophagy in lipopolysaccharides-induced WI-38 cells via modulating miR-100/NF-κB axis

Meihan Liu et al. Biochem Biophys Res Commun. .
Free article

Expression of concern in

Abstract

Pneumonia is a lower respiratory disease caused by pathogens or other factors. This study aimed to explore the roles and mechanism of long noncoding RNA HAGLROS in lipopolysaccharides (LPS)-induced inflammatory injury in pneumonia. The HAGLROS expression in serum of patients with acute stage pneumonia was detected. To induce pulmonary injury, WI-38 human lung fibroblasts were stimulated with lipopolysaccharides (LPS). The HAGLROS expressions in LPS-treated WI-38 cells and the effects of HAGLROS knockdown on the viability, apoptosis, and autophagy of LPS-induced cells were detected. Moreover, the regulatory relationship between HAGLROS and miR-100 was explored as well as the functional targets of miR-100 were identified. Furthermore, the regulatory relationship between miR-100 and PI3K/AKT/NF-κB pathway was elucidated. LncRNA HAGLROS was higher expressed in serum of patients with acute stage pneumonia compared with that in serum of healthy control. LPS caused WI-38 cell injury and increased HAGLROS levels. Downregulation of HAGLROS alleviated LPS-induced cell injury via increasing cell viability, and inhibiting apoptosis and autophagy. Moreover, there was a negative correlation between HAGLROS and miR-100, and the effects of HAGLROS downregulation on LPS-induced apoptosis and autophagy in WI-38 cells were by regulation of miR-100. Furthermore, NFΚB3 was verified as a functional target of miR-100 and effects of miR-100 inhibition on LPS-induced WI-38 cell injury were alleviated by knockdown of NFΚB3. Besides, Knockdown of HAGLROS inhibited the activation of PI3K/AKT/NF-κB pathway. Our findings reveal that downregulation of HAGLROS may alleviate LPS-induced inflammatory injury in WI-38 cells via modulating miR-100/NF-κB axis. HAGLROS/miR-100/NF-κB axis may provide a new strategy for treating acute stage of pneumonia.

Keywords: HAGLROS; PI3K/AKT/NF-κB pathway; Pneumonia; miR-100.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources