A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate
- PMID: 29673959
- DOI: 10.1016/j.margen.2018.03.005
A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate
Abstract
Antiparasitic drugs such as emamectin benzoate (EMB) are relied upon to reduce the parasite load, particularly of the sea louse Lepeophtheirus salmonis, on farmed salmon. The decline in EMB treatment efficacy for this purpose is an important issue for salmon producers around the world, and particularly for those in the Atlantic Ocean where widespread EMB tolerance in sea lice is recognized as a significant problem. Salmon farms in the Northeast Pacific Ocean have not historically experienced the same issues with treatment efficacy, possibly due to the relatively large population of endemic salmonid hosts that serve to both redistribute surviving lice and dilute populations potentially under selection by introducing naïve lice to farms. Frequent migration of lice among farmed and wild hosts should limit the effect of farm-specific selection pressures on changes to the overall allele frequencies of sea lice in the Pacific Ocean. A previous study using microsatellites examined L. salmonis oncorhynchi from 10 Pacific locations from wild and farmed hosts and found no population structure. Recently however, a farm population of sea lice was detected where EMB bioassay exposure tolerance was abnormally elevated. In response, we have developed a Pacific louse draft genome that complements the previously-released Atlantic louse sequence. These genomes were combined with whole-genome re-sequencing data to design a highly sensitive 201,279 marker SNP array applicable for both subspecies (90,827 validated Pacific loci; 153,569 validated Atlantic loci). Notably, kmer spectrum analysis of the re-sequenced samples indicated that Pacific lice exhibit a large within-individual heterozygosity rate (average of 1 in every 72 bases) that is markedly higher than that of Atlantic individuals (1 in every 173 bases). The SNP chip was used to produce a high-density map for Atlantic sea louse linkage group 5 that was previously shown to be associated with EMB tolerance in Atlantic lice. Additionally, 478 Pacific louse samples from farmed and wild hosts obtained between 2005 and 2014 were also genotyped on the array. Clustering analysis allowed us to detect the apparent emergence of an otherwise rare genotype at a high frequency among the lice collected from two farms in 2013 that had reported elevated EMB tolerance. This genotype was not observed in louse samples collected from the same farm in 2010, nor in any lice sampled from other locations prior to 2013. However, this genotype was detected at low frequencies in louse samples from farms in two locations reporting elevated EMB tolerance in 2014. These results suggest that a rare genotype present in Pacific lice may be locally expanded in farms after EMB treatment. Supporting this hypothesis, 437 SNPs associated with this genotype were found to be in a region of linkage group 5 that overlaps the region associated with EMB resistance in Atlantic lice. Finally, five of the top diagnostic SNPs within this region were used to screen lice that had been subjected to an EMB survival assay, revealing a significant association between these SNPs and EMB treatment outcome. To our knowledge this work is the first report to identify a genetic link to altered EMB efficacy in L. salmonis in the Pacific Ocean.
Keywords: EMB; Lepeophtheirus salmonis; Resistance; SLICE; Salmon farm; Sea lice.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Similar articles
-
QTL mapping provides new insights into emamectin benzoate resistance in salmon lice, Lepeophtheirus salmonis.BMC Genomics. 2024 Dec 18;25(1):1212. doi: 10.1186/s12864-024-11096-2. BMC Genomics. 2024. PMID: 39695954 Free PMC article.
-
Sea lice population and sex differences in P-glycoprotein expression and emamectin benzoate resistance on salmon farms in the Bay of Fundy, New Brunswick, Canada.Pest Manag Sci. 2014 Jun;70(6):905-14. doi: 10.1002/ps.3620. Epub 2013 Aug 29. Pest Manag Sci. 2014. PMID: 23913539
-
Optimization and field use of a bioassay to monitor sea lice Lepeophtheirus salmonis sensitivity to emamectin benzoate.Dis Aquat Organ. 2008 Apr 1;79(2):119-31. doi: 10.3354/dao01887. Dis Aquat Organ. 2008. PMID: 18500028
-
Salmon lice--impact on wild salmonids and salmon aquaculture.J Fish Dis. 2013 Mar;36(3):171-94. doi: 10.1111/jfd.12061. Epub 2013 Jan 13. J Fish Dis. 2013. PMID: 23311858 Free PMC article. Review.
-
Analysis and management of resistance to chemotherapeutants in salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae).Pest Manag Sci. 2002 Jun;58(6):528-36. doi: 10.1002/ps.482. Pest Manag Sci. 2002. PMID: 12138619 Review.
Cited by
-
Migratory hosts can maintain the high-dose/refuge effect in a structured host-parasite system: The case of sea lice and salmon.Evol Appl. 2020 Sep 10;13(10):2521-2535. doi: 10.1111/eva.12984. eCollection 2020 Dec. Evol Appl. 2020. PMID: 33294006 Free PMC article.
-
IIb-RAD-sequencing coupled with random forest classification indicates regional population structuring and sex-specific differentiation in salmon lice (Lepeophtheirus salmonis).Ecol Evol. 2022 Apr 6;12(4):e8809. doi: 10.1002/ece3.8809. eCollection 2022 Apr. Ecol Evol. 2022. PMID: 35414904 Free PMC article.
-
An update of the salmon louse (Lepeophtheirus salmonis) reference genome assembly.G3 (Bethesda). 2022 May 30;12(6):jkac087. doi: 10.1093/g3journal/jkac087. G3 (Bethesda). 2022. PMID: 35404448 Free PMC article.
-
Insights from Hi-C data regarding the Pacific salmon louse (Lepeophtheirus salmonis) sex chromosomes.G3 (Bethesda). 2024 Jul 8;14(7):jkae087. doi: 10.1093/g3journal/jkae087. G3 (Bethesda). 2024. PMID: 38683737 Free PMC article.
-
A genetic linkage map for the salmon louse (Lepeophtheirus salmonis): evidence for high male:female and inter-familial recombination rate differences.Mol Genet Genomics. 2019 Apr;294(2):343-363. doi: 10.1007/s00438-018-1513-7. Epub 2018 Nov 20. Mol Genet Genomics. 2019. PMID: 30460550
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources