Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 1:304:24-38.
doi: 10.1016/j.jneumeth.2018.02.013. Epub 2018 Apr 16.

Model order effects on ICA of resting-state complex-valued fMRI data: Application to schizophrenia

Affiliations

Model order effects on ICA of resting-state complex-valued fMRI data: Application to schizophrenia

Li-Dan Kuang et al. J Neurosci Methods. .

Abstract

Background: Component splitting at higher model orders is a widely accepted finding for independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data. However, our recent study found that intact components occurred with subcomponents at higher model orders.

New method: This study investigated model order effects on ICA of resting-state complex-valued fMRI data from 82 subjects, which included 40 healthy controls (HCs) and 42 schizophrenia patients. In addition, we explored underlying causes for distinct component splitting between complex-valued data and magnitude-only data by examining model order effects on ICA of phase fMRI data. A best run selection method was proposed to combine subject averaging and a one-sample t-test. We selected the default mode network (DMN)-, visual-, and sensorimotor-related components from the best run of ICA at varying model orders from 10 to 140.

Results: Results show that component integration occurred in complex-valued and phase analyses, whereas component splitting emerged in magnitude-only analysis with increasing model order. Incorporation of phase data appears to play a complementary role in preserving integrity of brain networks.

Comparison with existing method(s): When compared with magnitude-only analysis, the intact DMN component obtained in complex-valued analysis at higher model orders exhibited highly significant subject-level differences between HCs and patients with schizophrenia. We detected significantly higher activity and variation in anterior areas for HCs and in posterior areas for patients with schizophrenia.

Conclusions: These results demonstrate the potential of complex-valued fMRI data to contribute generally and specifically to brain network analysis in identification of schizophrenia-related changes.

Keywords: Complex-valued fMRI data; Component splitting; Independent component analysis (ICA); Model order; Phase data; Schizophrenia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources