Using Radiolabeled 3'-Deoxy-3'-18F-Fluorothymidine with PET to Monitor the Effect of Dexamethasone on Non-Small Cell Lung Cancer
- PMID: 29674424
- PMCID: PMC6167537
- DOI: 10.2967/jnumed.117.207258
Using Radiolabeled 3'-Deoxy-3'-18F-Fluorothymidine with PET to Monitor the Effect of Dexamethasone on Non-Small Cell Lung Cancer
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer mortality in the United States, and pemetrexed-based therapies are regularly used to treat nonsquamous NSCLC. Despite widespread use, pemetrexed has a modest effect on progression-free survival, with varying efficacy between individuals. Recent work has indicated that dexamethasone, given to prevent pemetrexed toxicity, is able to protect a subset of NSCLC cells from pemetrexed cytotoxicity by temporarily suppressing the S phase of the cell cycle. Therefore, dexamethasone might block treatment efficacy in a subpopulation of patients and might be contributing to the variable response to pemetrexed. Methods: Differences in retention of the experimental PET tracer 3'-deoxy-3'-fluorothymidine (FLT) were used to monitor S-phase suppression by dexamethasone in NSCLC cell models, animals with tumor xenografts, and patients with advanced cancer. Results: Significant reductions in tracer uptake were observed after 24 h of dexamethasone treatment in NSCLC cell lines and xenograft models expressing high levels of glucocorticoid receptor α, coincident with pemetrexed resistance visualized by attenuation of the flare effect associated with pemetrexed activity. Two of 4 patients imaged in a pilot study with 18F-FLT PET after dexamethasone treatment demonstrated reductions in tracer uptake from baseline, with a variable response between individual tumor lesions. Conclusion:18F-FLT PET represents a useful method for the noninvasive monitoring of dexamethasone-mediated S-phase suppression in NSCLC and might provide a way to individualize chemotherapy in patients receiving pemetrexed-based regimens.
Keywords: FLT; PET; dexamethasone; imaging; lung cancer.
© 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Figures
References
-
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30. - PubMed
-
- Hanna N, Shepherd FA, Fossella FV, et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol. 2004;22:1589–1597. - PubMed
-
- Patel JD, Socinski MA, Garon EB, et al. PointBreak: a randomized phase III study of pemetrexed plus carboplatin and bevacizumab followed by maintenance pemetrexed and bevacizumab versus paclitaxel plus carboplatin and bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small-cell lung cancer. J Clin Oncol. 2013;31:4349–4357. - PMC - PubMed
-
- Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26:3543–3551. - PubMed
-
- Chattopadhyay S, Moran RG, Goldman ID. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther. 2007;6:404–417. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical