Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Dec 4;9(3):560-568.
doi: 10.1039/c7sc04454b. eCollection 2018 Jan 21.

The aromatic dianion metalloles

Affiliations
Review

The aromatic dianion metalloles

Junnian Wei et al. Chem Sci. .

Abstract

Metalloaromatic species are unique and important both experimentally and theoretically. Significant progress has been made during the past few decades. New aromatic systems have challenged and extended the concept of aromaticity remarkably. In this perspective, recent results on the study of the dianion aromatic metalloles and their corresponding analogues are reviewed. These include the dilithio group 14 metalloles, group 13 metalloles and transition metal metalloles. X-ray crystallography has made a key contribution to the understanding of the structures. Various theoretical tools, such as NICS and AdNDP, make it possible to measure the aromaticity beyond Hückel's rule. The dianion butadiene skeletons play a key role in these metalloles and can be regarded as non-innocent ligands, which accept the electrons from the metal center and thus form the aromatic rings. By simply changing the central metals to different metals, the metallole analogues such as dicupra[10]annulenes and spiroaromatic palladoles can also be generated, which opens a door to synthesize other metalla-macrocyclic aromatics. Key challenges and envisioned opportunities for the future, such as applying these dianion metalloles as novel ligands of transition metals and generating new types of organometallic aromatic system, are also discussed.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. A general method to prepare the dilithio metalloles.
Scheme 2
Scheme 2. Preparation of dilithio-Si 2.
Scheme 3
Scheme 3. Preparation of dilithio-Ge 4 and 5.
Scheme 4
Scheme 4. Preparation of dilithio-Sn 7.
Scheme 5
Scheme 5. DFT calculations of dilithio-Sn 7.
Fig. 1
Fig. 1. Origin of the aromatic nature of dilithio-Sn 7.
Scheme 6
Scheme 6. Preparation of dilithio-Pb 9 and 11.
Scheme 7
Scheme 7. Preparation of dilithio-Al 14.
Scheme 8
Scheme 8. Preparation of dilithio-Ga 16.
Scheme 9
Scheme 9. Preparation of tetralithiodigalloles 18.
Fig. 2
Fig. 2. Novel method to prepare dilithio metalloles.
Scheme 10
Scheme 10. Reaction of diphenyl dilithio reagent with Ni(cod)2.
Scheme 11
Scheme 11. Preparation of dilithio-Ni 21.
Scheme 12
Scheme 12. Preparation of dilithio-Rh 22.
Fig. 3
Fig. 3. Molecular structure and selected bond lengths (Å) of 22.
Scheme 13
Scheme 13. An alternative explanation of the formation of Ring B.
Scheme 14
Scheme 14. Preparation of pentalithio spiroaromatic rhodacycle 24.
Scheme 15
Scheme 15. Preparation of tetralithio spiroaromatic palladoles 25 and platinacycles 26.
Scheme 16
Scheme 16. Preparation of dicupra[10]annulenes 27.
Fig. 4
Fig. 4. Selected bond lengths (Å) of 27 (left) and 28 (right).
Scheme 17
Scheme 17. The comparison of the synthesis of the di-Li and di-K silole dianion complexes.
Scheme 18
Scheme 18. Synthesis of μ–η55-stannole dianion complexes 31.
Scheme 19
Scheme 19. Reaction of dilithiostannole 32 with 2 equivalents of Cp2HfCl2 in toluene.
Scheme 20
Scheme 20. Reaction of C4H6BMe·NMe2H with [(C2H4)2RhCl]2.
Scheme 21
Scheme 21. Reaction of Fe3(CO)12 with HCCSi(Ph)3.
Scheme 22
Scheme 22. Reaction of Ru3(CO)12 with MeCCSi(Me)3.
Scheme 23
Scheme 23. Generation of chromium complex 46.

References

    1. Faraday M. Philos. Trans. R. Soc. London. 1825;115:440–446.
    1. Boldyrev A. I., Wang L.-S. Chem. Rev. 2005;105:3716–3757. - PubMed
    2. Tsipis C. A. Coord. Chem. Rev. 2005;249:2740–2762.
    3. Zubarev D. Yu., Averkiev B. B., Zhai H.-J., Wang L. S., Boldyrev A. I. Phys. Chem. Chem. Phys. 2008;10:257–267. - PubMed
    4. Feixas F., Matito E., Poater J., Solà M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2013;3:105–122.
    1. Bleeke J. R. Chem. Rev. 2001;101:1205–1228. - PubMed
    2. Jia G. Acc. Chem. Res. 2004;37:479–486. - PubMed
    3. Wright L. J. Dalton Trans. 2006:1821–1827. - PubMed
    4. Landorf C. W., Haley M. M. Angew. Chem., Int. Ed. 2006;45:3914–3936. - PubMed
    5. Chen J., Jia G. Coord. Chem. Rev. 2013;257:2491–2521.
    6. Frogley B. J., Wright L. J. Coord. Chem. Rev. 2014;270–271:151–166.
    7. Cao X.-Y., Zhao Q., Lin Z., Xia H. Acc. Chem. Res. 2014;47:341–354. - PubMed
    8. Roy S., Rosenthal U., Jemmis E. D. Acc. Chem. Res. 2014;47:2917–2930. - PubMed
    9. Frogley B. J. and Wright L. J., Chem.–Eur. J., 10.1002/chem.201704888. - DOI
    1. Thorn D. L., Hoffmann R. Nouv. J. Chim. 1979;3:39–45.
    1. Elliott G. P., Roper W. R., Waters J. M. J. Chem. Soc., Chem. Commun. 1982:811–813.

LinkOut - more resources