Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jan 17;9(6):1424-1432.
doi: 10.1039/c7sc04768a. eCollection 2018 Feb 14.

sp3 C-H activation via exo-type directing groups

Affiliations
Review

sp3 C-H activation via exo-type directing groups

Yan Xu et al. Chem Sci. .

Abstract

The application of exo-type directing groups (DGs) has led to the discovery of a wide range of novel C(sp3)-H activation methods, which allow efficient and site-selective functionalization of alcohol and amide derivatives. In this mini-review we discuss the challenges of this field and summarize the achievements, including DG designs, reaction discoveries and mechanistic studies.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. (a) Endo-metalation vs. exo-metalation. (b) Representative endo-type directing groups. (c) Representative exo-type directing groups.
Scheme 2
Scheme 2. Endo preference in regioselective C–H metalation.
Scheme 3
Scheme 3. Selective activation of endo C(sp3)–H bonds over exo C(sp2)–H bonds.
Scheme 4
Scheme 4. Isomerization of exo-metallacycles to endo-metallacycles.
Scheme 5
Scheme 5. Exo-metallacycle formation promoted by (a) electronic bias and (b) blocking of endo reaction sites.
Scheme 6
Scheme 6. General strategies in the design of exo-directing groups.
Scheme 7
Scheme 7. Pt-mediated dehydrogenation of a remote ethyl group.
Scheme 8
Scheme 8. Pd-mediated C(sp3)–H alkenylation and carbonylation of 2-tert-butylaniline derivatives.
Scheme 9
Scheme 9. Pd-catalyzed β-C–H acetoxylation of masked alcohols.
Scheme 10
Scheme 10. C–H cyclopalladation at bridgehead positions enabled by an exo-directing group.
Scheme 11
Scheme 11. Ir-catalyzed β-C–H amidation of masked alcohols.
Scheme 12
Scheme 12. Pd-catalyzed β-C–H sulfonyloxylation of masked alcohols.
Scheme 13
Scheme 13. Pd-catalyzed β-C–H fluorination/sulfonyloxylation of masked cyclohexanols.
Scheme 14
Scheme 14. Pd-catalyzed intramolecular β-C–H etherification with internal hydroxyl nucleophiles.
Scheme 15
Scheme 15. Pd-catalyzed β-C–H oxygenation of protected amines.
Scheme 16
Scheme 16. Pd-catalyzed β-C–H arylation of 1-alkyl-1H-pyrazoles.
Scheme 17
Scheme 17. Pd-catalyzed β-C–H sulfonimidation of masked alcohols.
Scheme 18
Scheme 18. Pd-catalyzed β-C–H acetoxylation and halogenation of sulfoximine-N-amides.
Scheme 19
Scheme 19. Pd-catalyzed γ-C–H arylation of free primary amines using 8-formylquinoline as the transient directing group.
Scheme 20
Scheme 20. Pd-catalyzed δ-C–H arylation of 2-tert-butylanilines.
Scheme 21
Scheme 21. Pd-catalyzed γ-C–H arylation of free primary amines using glyoxylic acid as the transient directing group.
Scheme 22
Scheme 22. Pd-catalyzed γ-C–H arylation of free primary amines using 2-hydroxynicotinaldehyde as the transient directing group.
Scheme 23
Scheme 23. Pd-catalyzed γ-C–H arylation of free primary amines using 3,5-di-tert-butylsalicylaldehyde as the transient directing group.
Scheme 24
Scheme 24. Two other types of C(sp3)–H activation via the formation of exo-metallacycles.

References

    1. Daugulis O., Do H.-Q., Shabashov D. Acc. Chem. Res. 2009;42:1074–1086. - PMC - PubMed
    2. Lyons T. W., Sanford M. S. Chem. Rev. 2010;110:1147–1169. - PMC - PubMed
    3. Colby D. A., Bergman R. G., Ellman J. A. Chem. Rev. 2010;110:624–655. - PMC - PubMed
    4. Yu J.-Q. and Shi Z., Topics in Current Chemistry, C–H Activation, Springer, 2010, vol. 292. - PubMed
    5. Davies H. M. L., Du Bois J., Yu J.-Q. Chem. Soc. Rev. 2011;40:1855–1856. - PubMed
    6. Yamaguchi J., Yamaguchi A. D., Itami K. Angew. Chem., Int. Ed. 2012;51:8960–9009. - PubMed
    7. White M. C. Science. 2012;335:807–810. - PubMed
    8. Yang L., Huang H. Chem. Rev. 2015;115:3468–3517. - PubMed
    9. Gensch T., Hopkinson M., Glorius F., Wencel-Delord J. Chem. Soc. Rev. 2016;45:2900–2936. - PubMed
    10. He J., Wasa M., Chan K. S. L., Shao Q., Yu J.-Q. Chem. Rev. 2017;117:8754–8786. - PMC - PubMed
    11. Dong Z., Ren Z., Thompson S. J., Xu Y., Dong G. Chem. Rev. 2017;117:9333–9403. - PubMed
    12. Hummel J. R., Boerth J. A., Ellman J. A. Chem. Rev. 2017;117:9163–9227. - PMC - PubMed
    13. Kim D. S., Park W. J., Jun C. H. Chem. Rev. 2017;117:8977–9015. - PubMed
    14. Park Y., Kim Y., Chang S. Chem. Rev. 2017;117:9247–9301. - PubMed
    15. Baudoin O. Acc. Chem. Res. 2017;50:1114–1123. - PubMed
    1. For representative works using endo-type DGs, see:

    2. Desai L. V., Hull K. L., Sanford M. S. J. Am. Chem. Soc. 2004;126:9542–9543. - PubMed
    3. Giri R., Chen X., Yu J.-Q. Angew. Chem., Int. Ed. 2005;44:2112–2115. - PubMed
    4. Giri R., Maugel N., Li J.-J., Wang D.-H., Breazzano S. P., Saunders L. B., Yu J.-Q. J. Am. Chem. Soc. 2007;129:3510–3511. - PubMed
    5. Zhang F.-L., Hong K., Li T.-J., Park H., Yu J.-Q. Science. 2016;351:252–256. - PMC - PubMed
    6. Yang K., Li Q., Liu Y., Li G., Ge H. J. Am. Chem. Soc. 2016;138:12775–12778. - PubMed
    7. Xu Y., Young M. C., Dong G. J. Am. Chem. Soc. 2017;139:5716–5719. - PubMed
    1. Dupont J., Consorti C. S., Spencer J. Chem. Rev. 2005;105:2527–2571. - PubMed
    1. De Munno G., Ghedini M., Neve F. Inorg. Chim. Acta. 1995;239:155–158.
    2. Barro J., Granell J., Saiz D., Sales J., Font-Bardía M., Solans X. J. Organomet. Chem. 1993;456:147–154.
    1. Clark P. W., Dyke S. F., Smith G. J. Organomet. Chem. 1987;330:447–460.

LinkOut - more resources