Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 5;9(7):1795-1802.
doi: 10.1039/c7sc04916a. eCollection 2018 Feb 21.

Stereoselective cobalt-catalyzed halofluoroalkylation of alkynes

Affiliations

Stereoselective cobalt-catalyzed halofluoroalkylation of alkynes

Guojiao Wu et al. Chem Sci. .

Abstract

Stereoselective additions of highly functionalized reagents to available unsaturated hydrocarbons are an attractive synthetic tool due to their high atom economy, modularity, and rapid generation of complexity. We report efficient cobalt-catalyzed (E)-halofluoroalkylations of alkynes/alkenes that enable the construction of densely functionalized, stereodefined fluorinated hydrocarbons. The mild conditions (2 mol% cat., 20 °C, acetone/water, 3 h) tolerate various functional groups, i.e. halides, alcohols, aldehydes, nitriles, esters, and heteroarenes. This reaction is the first example of a highly stereoselective cobalt-catalyzed halo-fluoroalkylation. Unlike related cobalt-catalyzed reductive couplings and Heck-type reactions, it operates via a radical chain mechanism involving terminal halogen atom transfer which obviates the need for a stoichiometric sacrificial reductant.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Metal-mediated halo-fluoroalkylations of alkynes.
Scheme 2
Scheme 2. Generalized mechanistic dichotomy of radical addition reactions under low-valent cobalt catalysis.
Scheme 3
Scheme 3. Cobalt-catalyzed bromo-carboxydifluoromethylation of alkynes. Standard conditions: 1 (0.3 mmol), 2a (0.45 mmol), CoBr2 (2 mol%), dppbz (2 mol%) and Zn (5 mol%), 0.6 mL acetone/H2O, 20 °C, 3 h under N2. Isolated yields are given; E/Z ratios in parentheses (by 19F NMR). [a] 20 mol% Zn. [b] 40 mol% Zn, 8 h.
Scheme 4
Scheme 4. Reactions with alkyl-substituted terminal alkynes.
Scheme 5
Scheme 5. Cobalt-catalyzed halo-fluoroalkylation of alkynes and alkenes. Standard conditions: 1 (0.3 mmol), 2 (0.45 mmol), CoBr2 (2 mol%), dppbz (2 mol%), Zn (5 mol%), 0.6 mL acetone/H2O, 20 °C, 3 h under N2. Isolated yields given; E/Z ratios in parentheses (by 19F NMR). [a] 20 mol% Zn. [b] RF–Br (1.0 equiv.), 10 mol% Zn. [c] RF–X (3.0 equiv.), 10 mol% Zn. [d]E/Z ratio of isolated products. [e] 10 mol% Zn. [f] 6 h.
Scheme 6
Scheme 6. Post-ATRA transformations by cross-coupling reactions.
Scheme 7
Scheme 7. Key mechanistic experiments.
Fig. 1
Fig. 1. 31P NMR (top) and 1H NMR (bottom) monitoring of catalyst formation and reductive electrophile activation.
Fig. 2
Fig. 2. UV-vis absorption spectra: CoBr2/dppbz (orange); after reduction of Co(ii) with Zn to Co(i) (green); Co(i) with 1 equiv. 1a (blue); Co(i) with 1 equiv. of 2a (yellow).
Scheme 8
Scheme 8. Proposed reaction mechanism.

References

    1. Müller K., Faeh C., Diederich F. Science. 2007;317:1881. - PubMed
    2. Hagmann W. K. J. Med. Chem. 2008;51:4359. - PubMed
    3. O'Hagan D. Chem. Soc. Rev. 2008;37:308. - PubMed
    4. Purser S., Moore P. R., Swallow S., Gouverneur V. Chem. Soc. Rev. 2008;37:320. - PubMed
    5. Gouverneur V. and Müller K., Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.
    1. Trifluoromethylations:

    2. Furuya T., Kamlet A. S., Ritter T. Nature. 2011;473:470. - PMC - PubMed
    3. Tomashenko O. A., Grushin V. V. Chem. Rev. 2011;111:4475. - PubMed
    4. Besset T., Schneider C., Cahard D. Angew. Chem., Int. Ed. 2012;51:5048. - PubMed
    5. Liang T., Neumann C. N., Ritter T. Angew. Chem., Int. Ed. 2013;52:8214. - PubMed
    6. Chu L., Qing F.-L. Acc. Chem. Res. 2014;47:1513. - PubMed
    7. Merino E., Nevado C. Chem. Soc. Rev. 2014;43:6598. - PMC - PubMed
    8. Egami H., Sodeoka M. Angew. Chem., Int. Ed. 2014;53:8294. - PubMed
    9. Charpentier J., Früh N., Togni A. Chem. Rev. 2015;115:650. - PubMed
    10. Liu X., Xu C., Wang M., Liu Q. Chem. Rev. 2015;115:683. - PubMed
    11. Ni C., Hu M., Hu J. Chem. Rev. 2015;115:765. - PubMed
    12. Yang X., Wu T., Phipps R. J., Toste F. D. Chem. Rev. 2015;115:826. - PMC - PubMed
    13. Alonso C., Marigotra E. M., Rubiales G., Palacios F. Chem. Rev. 2015;115:1847. - PubMed
    14. Gao P., Song X.-R., Liu X.-Y., Liang Y.-M. Chem.–Eur. J. 2015;21:7648. - PubMed
    1. Difluoroalkylations:

    2. Fujikawa K., Fujioka Y., Kobayashi A., Amii H. Org. Lett. 2011;13:5560. - PubMed
    3. Fier P. S., Hartwig J. F. J. Am. Chem. Soc. 2012;134:5524. - PMC - PubMed
    4. He Z., Luo T., Hu M., Cao Y., Hu J. Angew. Chem., Int. Ed. 2012;51:3944. - PubMed
    5. Qi Q., Shen Q., Lu L. J. Am. Chem. Soc. 2012;134:6548. - PubMed
    6. Feng Z., Chen F., Zhang X. Org. Lett. 2012;14:1938. - PubMed
    7. Jiang X., Liu L., Qing F.-L. Org. Lett. 2012;14:2870. - PubMed
    8. He Z., Hu M., Luo T., Li L., Hu J. Angew. Chem., Int. Ed. 2012;51:11545. - PubMed
    9. Prakash G. K. S., Ganesh S. K., Jones J.-P., Kulkarni A., Masood K., Swabeck J. K., Olah G. A. Angew. Chem., Int. Ed. 2012;51:12090. - PubMed
    10. Li Z., Cui Z., Liu Z.-Q. Org. Lett. 2013;15:406. - PubMed
    11. Min Q.-Q., Yin Z., Feng Z., Guo W.-H., Zhang X. J. Am. Chem. Soc. 2014;136:1230. - PubMed
    12. Feng Z., Xiao Y.-L., Zhang X. Org. Chem. Front. 2014;1:11.
    13. Xiao Y.-L., Guo W.-H., He G.-Z., Pan Q., Zhang X. Angew. Chem., Int. Ed. 2014;53:9909. - PubMed
    14. Ge S., Arlow S. I., Mormino M. G., Hartwig J. F. J. Am. Chem. Soc. 2014;136:14401. - PMC - PubMed
    15. Feng Z., Min Q.-Q., Zhao H.-Y., Gu J.-W., Zhang X. Angew. Chem., Int. Ed. 2015;54:1270. - PubMed
    16. Shao C., Shi G., Zhang Y., Pan S., Guan X. Org. Lett. 2015;17:2652. - PubMed
    17. An L., Xiao Y.-L., Min Q.-Q., Zhang X. Angew. Chem., Int. Ed. 2015;54:9079. - PubMed
    18. Li Z., Garcia-Domínguez A., Nevado C. J. Am. Chem. Soc. 2015;137:11610. - PubMed
    19. Li G., Wang T., Fei F., Su Y.-M., Li Y., Lan Q., Wang X.-S. Angew. Chem., Int. Ed. 2016;55:3491. - PubMed
    20. Xiao Y.-L., Min Q.-Q., Xu C., Wang R.-W., Zhang X. Angew. Chem., Int. Ed. 2016;55:5837. - PubMed
    21. Ivanova M. V., Bayle A., Besset T., Poisson T., Pannecoucke X. Angew. Chem., Int. Ed. 2015;54:13406. - PubMed
    22. Wang X., Studer A. Org. Lett. 2017;19:2977. - PMC - PubMed
    23. Besset T., Poisson T., Pannecoucke X. Eur. J. Org. Chem. 2015:2765.
    24. Belhomme M.-C., Besset T., Poisson T., Pannecoucke X. Chem.–Eur. J. 2015;21:12836. - PubMed
    1. . For selected other methods, see:

    2. Takeyama Y., Ichinose Y., Oshima K., Utimato K. Tetrahedron Lett. 1989;30:3159.
    3. Li Y., Li H., Hu J. Tetrahedron. 2009;65:478.
    4. Fang X., Yang X., Yang X., Mao S., Wang Y., Chen G., Wu F. Tetrahedron. 2007;63:10684.
    5. Huang W., Lv L., Zhang Y. Chin. J. Chem. 1990;4:350.
    6. Rong G.-B., Keese R. Tetrahedron Lett. 1990;31:5615.
    7. Tsuchii K., Imura M., Kamada N., Hirao T., Ogawa A. J. Org. Chem. 2004;69:6658. - PubMed
    8. Ishihara T., Kuroboshi M., Okada Y. Chem. Lett. 1986:1895.
    9. Ma S., Lu X. Tetrahedron. 1990;46:357.
    10. Jennings M. P., Cork E. A., Ramachandran P. V. J. Org. Chem. 2000;65:8763. - PubMed
    11. Motoda D., Kinoshita H., Shinokubo H., Oshima K. Adv. Synth. Catal. 2002;344:261.
    1. Xu T., Cheung C., Hu X. Angew. Chem., Int. Ed. 2014;53:4910. - PubMed