In silico toxicology protocols
- PMID: 29678766
- PMCID: PMC6026539
- DOI: 10.1016/j.yrtph.2018.04.014
In silico toxicology protocols
Abstract
The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information.
Keywords: Computational toxicology; Expert alert; Expert review; In silico; In silico toxicology; Predictive toxicology; QSAR.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Figures







Similar articles
-
Genetic toxicology in silico protocol.Regul Toxicol Pharmacol. 2019 Oct;107:104403. doi: 10.1016/j.yrtph.2019.104403. Epub 2019 Jun 11. Regul Toxicol Pharmacol. 2019. PMID: 31195068 Free PMC article.
-
In Silico Approaches in Predictive Genetic Toxicology.Methods Mol Biol. 2019;2031:351-373. doi: 10.1007/978-1-4939-9646-9_20. Methods Mol Biol. 2019. PMID: 31473971
-
In silico toxicology for the pharmaceutical sciences.Toxicol Appl Pharmacol. 2009 Dec 15;241(3):356-70. doi: 10.1016/j.taap.2009.08.022. Epub 2009 Aug 28. Toxicol Appl Pharmacol. 2009. PMID: 19716836 Review.
-
A framework for categorizing sources of uncertainty in in silico toxicology methods: Considerations for chemical toxicity predictions.Regul Toxicol Pharmacol. 2024 Dec;154:105737. doi: 10.1016/j.yrtph.2024.105737. Epub 2024 Nov 14. Regul Toxicol Pharmacol. 2024. PMID: 39547503
-
The challenges involved in modeling toxicity data in silico: a review.Curr Pharm Des. 2012;18(9):1266-91. doi: 10.2174/138161212799436359. Curr Pharm Des. 2012. PMID: 22316153 Review.
Cited by
-
Skin sensitization in silico protocol.Regul Toxicol Pharmacol. 2020 Oct;116:104688. doi: 10.1016/j.yrtph.2020.104688. Epub 2020 Jul 1. Regul Toxicol Pharmacol. 2020. PMID: 32621976 Free PMC article.
-
Challenging the pipeline.Stem Cell Reports. 2021 Sep 14;16(9):2033-2037. doi: 10.1016/j.stemcr.2021.08.004. Stem Cell Reports. 2021. PMID: 34525380 Free PMC article.
-
A cross-industry collaboration to assess if acute oral toxicity (Q)SAR models are fit-for-purpose for GHS classification and labelling.Regul Toxicol Pharmacol. 2021 Mar;120:104843. doi: 10.1016/j.yrtph.2020.104843. Epub 2020 Dec 17. Regul Toxicol Pharmacol. 2021. PMID: 33340644 Free PMC article.
-
Exploring current read-across applications and needs among selected U.S. Federal Agencies.Regul Toxicol Pharmacol. 2019 Aug;106:197-209. doi: 10.1016/j.yrtph.2019.05.011. Epub 2019 May 10. Regul Toxicol Pharmacol. 2019. PMID: 31078681 Free PMC article.
-
Relevance of kinetic interactions and co-formulants for plant protection product liver toxicity in vitro.Arch Toxicol. 2025 Aug;99(8):3247-3268. doi: 10.1007/s00204-025-04071-7. Epub 2025 Apr 28. Arch Toxicol. 2025. PMID: 40295322 Free PMC article.
References
-
- Amaral RTD, Ansell J, Aptula N, Ashikaga T, Chaudhry Q, Hirose A, Jaworska J, Kojima H, Lafranconi M, Matthews E, Milstein S, Roesler C, Vaillancourt E, Verma R, Worth A, Yourick J. Report for the International Cooperation on Cosmetics Regulation. Silico Approaches for Safety Assessment of Cosmetic Ingredients. 2014 https://www.pharmamedtechbi.com/~/media/Supporting%20Documents/The%20Ros....
-
- Amaral R, Amores Da Silva P, Ansell J, Boisleve F, Dent M, Hatao M, Hirose A, Kasai Y, Kojima H, Kern P, Kreiling R, Milstein S, Oliveira J, Richarz A, Taalman R, Vaillancourt E, Verma R, Vieira NC, Weiss C. Report for the International Cooperation on Cosmetics Regulation, Joint Regulators-Industry Working Group: Integrated Strategies for Safety Assessments of Cosmetic Ingredients - Part I. 2017 http://www.iccr-cosmetics.org/files/4715/0824/0761/ICCR-11_JWG_Integrate....
-
- Amberg A, Harvey JS, Czich A, Spirkl H-P, Robinson S, White A, Elder DP. Do Carboxylic/Sulfonic acid halides really present a mutagenic and carcinogenic risk as impurities in final drug products? Org Process Res Dev. 2015;19:1495–506. doi: 10.1021/acs.oprd.5b00106. - DOI
-
- Amberg A, Beilke L, Bercu J, Bower D, Brigo A, Cross KP, Custer L, Dobo K, Dowdy E, Ford KA, Glowienke S, Gompel JV, Harvey J, Hasselgren C, Honma M, Jolly R, Kemper R, Kenyon M, Kruhlak N, Leavitt P, Miller S, Muster W, Nicolette J, Plaper A, Powley M, Quigley DP, Reddy MV, Spirkl HP, Stavitskaya L, Teasdale A, Weiner S, Welch DS, White A, Wichard J, Myatt GJ. Principles and procedures for implementation of ICH M7 recommended (Q)SAR analyses. Regulatory Toxicology and Pharmacology. 2016;77:13–24. doi: 10.1016//j.yrtph.2016.02.004. - DOI - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources