Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation
- PMID: 29680377
- DOI: 10.1016/j.cels.2018.03.013
Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation
Abstract
To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable.
Keywords: biosensors; computational biology; genetic oscillators; mutual information; orthogonal amplitude and period modulation; periodic signal generator in biology; protease; robustness; synthetic biology.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Comment in
-
Making Waves with Synthetic Oscillators.Cell Syst. 2018 Apr 25;6(4):406-407. doi: 10.1016/j.cels.2018.04.001. Cell Syst. 2018. PMID: 29698647
Similar articles
-
Long negative feedback loop enhances period tunability of biological oscillators.J Theor Biol. 2018 Mar 7;440:21-31. doi: 10.1016/j.jtbi.2017.12.014. Epub 2017 Dec 15. J Theor Biol. 2018. PMID: 29253507
-
A fast, robust and tunable synthetic gene oscillator.Nature. 2008 Nov 27;456(7221):516-9. doi: 10.1038/nature07389. Epub 2008 Oct 29. Nature. 2008. PMID: 18971928 Free PMC article.
-
Independent control of amplitude and period in a synthetic oscillator circuit with modified repressilator.Commun Biol. 2022 Jan 11;5(1):23. doi: 10.1038/s42003-021-02987-1. Commun Biol. 2022. PMID: 35017621 Free PMC article.
-
A comparative analysis of synthetic genetic oscillators.J R Soc Interface. 2010 Nov 6;7(52):1503-24. doi: 10.1098/rsif.2010.0183. Epub 2010 Jun 30. J R Soc Interface. 2010. PMID: 20591848 Free PMC article. Review.
-
Synthetic genetic circuits for programmable biological functionalities.Biotechnol Adv. 2019 Nov 1;37(6):107393. doi: 10.1016/j.biotechadv.2019.04.015. Epub 2019 Apr 30. Biotechnol Adv. 2019. PMID: 31051208 Review.
Cited by
-
Bacterial degrons in synthetic circuits.Open Biol. 2022 Aug;12(8):220180. doi: 10.1098/rsob.220180. Epub 2022 Aug 17. Open Biol. 2022. PMID: 35975648 Free PMC article. Review.
-
A protocol for dynamic model calibration.Brief Bioinform. 2022 Jan 17;23(1):bbab387. doi: 10.1093/bib/bbab387. Brief Bioinform. 2022. PMID: 34619769 Free PMC article.
-
Synthetic Switches and Regulatory Circuits in Plants.Plant Physiol. 2019 Mar;179(3):862-884. doi: 10.1104/pp.18.01362. Epub 2019 Jan 28. Plant Physiol. 2019. PMID: 30692218 Free PMC article. Review.
-
Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic With Systems Biology.Front Bioeng Biotechnol. 2020 Aug 7;8:942. doi: 10.3389/fbioe.2020.00942. eCollection 2020. Front Bioeng Biotechnol. 2020. PMID: 32850764 Free PMC article.
-
The dynamic-process characterization and prediction of synthetic gene circuits by dynamic delay model.iScience. 2024 Feb 5;27(3):109142. doi: 10.1016/j.isci.2024.109142. eCollection 2024 Mar 15. iScience. 2024. PMID: 38384832 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources