How measurement science can improve confidence in research results
- PMID: 29684013
- PMCID: PMC5933802
- DOI: 10.1371/journal.pbio.2004299
How measurement science can improve confidence in research results
Abstract
The current push for rigor and reproducibility is driven by a desire for confidence in research results. Here, we suggest a framework for a systematic process, based on consensus principles of measurement science, to guide researchers and reviewers in assessing, documenting, and mitigating the sources of uncertainty in a study. All study results have associated ambiguities that are not always clarified by simply establishing reproducibility. By explicitly considering sources of uncertainty, noting aspects of the experimental system that are difficult to characterize quantitatively, and proposing alternative interpretations, the researcher provides information that enhances comparability and reproducibility.
Conflict of interest statement
The authors have declared that no competing interests exist.
Similar articles
-
Replicability, Reproducibility, and Fragility of Research Findings-Ultimately, Caveat Emptor.Anesth Analg. 2016 Jul;123(1):244-8. doi: 10.1213/ANE.0000000000001398. Anesth Analg. 2016. PMID: 27183372 No abstract available.
-
Evolution in statistics: P values, statistical significance, kayaks, and walking trees.Adv Physiol Educ. 2020 Jun 1;44(2):221-224. doi: 10.1152/advan.00054.2020. Adv Physiol Educ. 2020. PMID: 32412384 No abstract available.
-
Documenting the methods history: would it improve the interpretability of studies?Circ Cardiovasc Qual Outcomes. 2012 Jul 1;5(4):418-9. doi: 10.1161/CIRCOUTCOMES.112.967646. Circ Cardiovasc Qual Outcomes. 2012. PMID: 22811497 No abstract available.
-
An overview of issues in infant and developmental research for the creation of robust and replicable science.Infant Behav Dev. 2019 Nov;57:101339. doi: 10.1016/j.infbeh.2019.101339. Epub 2019 Jul 24. Infant Behav Dev. 2019. PMID: 31351250 Review.
-
Pharmacogenetics: practices and opportunities for study design and data analysis.Drug Discov Today. 2011 Oct;16(19-20):862-6. doi: 10.1016/j.drudis.2011.08.008. Epub 2011 Aug 22. Drug Discov Today. 2011. PMID: 21875683 Review.
Cited by
-
Evaluation of image analysis tools for the measurement of cellular morphology.Front Cell Dev Biol. 2025 May 15;13:1572212. doi: 10.3389/fcell.2025.1572212. eCollection 2025. Front Cell Dev Biol. 2025. PMID: 40443732 Free PMC article. Review.
-
The NIH Somatic Cell Genome Editing program.Nature. 2021 Apr;592(7853):195-204. doi: 10.1038/s41586-021-03191-1. Epub 2021 Apr 7. Nature. 2021. PMID: 33828315 Free PMC article. Review.
-
Applying the science of measurement to biology: Why bother?PLoS Biol. 2019 Jun 20;17(6):e3000338. doi: 10.1371/journal.pbio.3000338. eCollection 2019 Jun. PLoS Biol. 2019. PMID: 31220076 Free PMC article.
-
Building confidence in digital health through metrology.Br J Radiol. 2020 May 1;93(1109):20190574. doi: 10.1259/bjr.20190574. Epub 2020 Jan 28. Br J Radiol. 2020. PMID: 31971816 Free PMC article.
-
Interpreting SARS-CoV-2 seroprevalence, deaths, and fatality rate - Making a case for standardized reporting to improve communication.Math Biosci. 2021 Mar;333:108545. doi: 10.1016/j.mbs.2021.108545. Epub 2021 Jan 15. Math Biosci. 2021. PMID: 33460673 Free PMC article. Review.
References
-
- Begley C. G. & Ellis L. M. Drug development: Raise standards for preclinical cancer research. Nature 2012;483(7391): 531–533 doi: 10.1038/483531a - DOI - PubMed
-
- Prinz F., Schlange T. & Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 2011;10(9): 712, doi: 10.1038/nrd3439-c1 - DOI - PubMed
-
- Peng R. D. Reproducible research in computational science. Science 2011;334(6060): 1226–1227, doi: 10.1126/science.1213847 - DOI - PMC - PubMed
-
- Strengthening Forensic Science in the United States: A Path Forward. Report No. 978-0-309-13130-8 (Committee on Identifying the Needs of the Forensic Sciences Community, National Research Council, 2009).
-
- Ioannidis J. P. et al. A network of investigator networks in human genome epidemiology. Am J Epidemiol 2005;162(4): 302–304, doi: 10.1093/aje/kwi201 - DOI - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources