Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018;26(4):177-192.
doi: 10.3233/HAB-180337.

Antibody fusion proteins with human ribonucleases 1 to 8

Affiliations

Antibody fusion proteins with human ribonucleases 1 to 8

Xenia Wezler et al. Hum Antibodies. 2018.

Abstract

ImmunoRNases combine tumor targeting by antibodies with the cytotoxic action of ribonucleases from the RNase A superfamily. This study investigated for the first time all catalytic active human RNase A family members (1 to 8) as effector components of antibody fusion proteins. ImmunoRNase fusion proteins were constructed using the CD30-specific bivalent recombinant scFv-Fc antibody SH313-B5. Production of the resulting entirely human immunoRNases 1 to 8 was done in mammalian cells by secretion of active forms. The immunoRNases mediated CD30-specific cell binding and showed ribonucleolytic activity. Interestingly, immunoRNases 1 and 2 were active in the presence of up to 5-/20-fold molar excess of the pancreatic RNase inhibitor (RI), which is supposed to efficiently inhibit all human RNase A activity. ImmunoRNases 3, 4, 6 and 7 were only inhibited by several fold molar excess of RI, whereas immunoRNases 5 and 8 were already completely inactive at equimolar RI concentrations. Compared to free RNases, activity and RI sensitivity were not significantly changed by antibody fusion or dimerisation. ImmunoRNase3 and 5 mediated tumor growth inhibition at low nanomolar concentrations. Anti-tumor activity was antigen-specific and did not show any correlation with ribonucleolytic activity or RI sensitivity.

Keywords: CD30; ImmunoRNase; RNases 1 to 8; antibody-based therapy; human RNase A superfamily; human antibody; lymphoma.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources