Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars
- PMID: 29690617
- PMCID: PMC6027200
- DOI: 10.3390/microorganisms6020034
Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars
Abstract
Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii, were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.
Keywords: Mars; freeze/thaw; methane; methanogens; permafrost.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Wagner D. Microbial communities and processes in arctic permafrost environments. In: Dion P., Nautiyal C.S., editors. Microbiology of Extreme Soils. Springer; Berlin, Germany: 2008. pp. 133–154.
-
- Wagner D., Spieck E., Bock E., Pfeiffer E.-M. Microbial life in terrestrial permafrost: Methanogenesis and nitrification in gelisols as potentials for exobiological process. In: Horneck G., Baumstark-Khan C., editors. Astrobiology: The Quest for the Conditions of Life. Springer; Berlin, Germany: 2002. pp. 143–159.
-
- Kieffer H.H., Martin T.Z., Peterfreund A.R., Jakosky B.M., Miner E.D., Palluconi F.D. Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 1977;82:4249–4291. doi: 10.1029/JS082i028p04249. - DOI
-
- Soare R.J., Osinski G.R., Roehm C.L. Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth Planet. Sci. Lett. 2008;272:382–393. doi: 10.1016/j.epsl.2008.05.010. - DOI
-
- Gallagher C., Balme M.R., Conway S.J., Grindrod P.M. Sorted clastic stripes, lobes and associated gullies in high-latitude craters on Mars: Landforms indicative of very recent, polycyclic ground-ice thaw and liquid flows. Icarus. 2011;211:458–471. doi: 10.1016/j.icarus.2010.09.010. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
