De novo main-chain modeling for EM maps using MAINMAST
- PMID: 29691408
- PMCID: PMC5915429
- DOI: 10.1038/s41467-018-04053-7
De novo main-chain modeling for EM maps using MAINMAST
Abstract
An increasing number of protein structures are determined by cryo-electron microscopy (cryo-EM) at near atomic resolution. However, tracing the main-chains and building full-atom models from EM maps of ~4-5 Å is still not trivial and remains a time-consuming task. Here, we introduce a fully automated de novo structure modeling method, MAINMAST, which builds three-dimensional models of a protein from a near-atomic resolution EM map. The method directly traces the protein's main-chain and identifies Cα positions as tree-graph structures in the EM map. MAINMAST performs significantly better than existing software in building global protein structure models on data sets of 40 simulated density maps at 5 Å resolution and 30 experimentally determined maps at 2.6-4.8 Å resolution. In another benchmark of building missing fragments in protein models for EM maps, MAINMAST builds fragments of 11-161 residues long with an average RMSD of 2.68 Å.
Conflict of interest statement
The authors declare no competing interests.
Figures






Similar articles
-
Protein Structure Modeling from Cryo-EM Map Using MAINMAST and MAINMAST-GUI Plugin.Methods Mol Biol. 2020;2165:317-336. doi: 10.1007/978-1-0716-0708-4_19. Methods Mol Biol. 2020. PMID: 32621234
-
Protein Structural Modeling for Electron Microscopy Maps Using VESPER and MAINMAST.Curr Protoc. 2022 Jul;2(7):e494. doi: 10.1002/cpz1.494. Curr Protoc. 2022. PMID: 35849043 Free PMC article.
-
De novo main-chain modeling with MAINMAST in 2015/2016 EM Model Challenge.J Struct Biol. 2018 Nov;204(2):351-359. doi: 10.1016/j.jsb.2018.07.013. Epub 2018 Jul 31. J Struct Biol. 2018. PMID: 30075190 Free PMC article.
-
Refinement of Atomic Structures Against cryo-EM Maps.Methods Enzymol. 2016;579:277-305. doi: 10.1016/bs.mie.2016.05.033. Epub 2016 Jun 24. Methods Enzymol. 2016. PMID: 27572731 Review.
-
Smart de novo Macromolecular Structure Modeling from Cryo-EM Maps.J Mol Biol. 2023 May 1;435(9):167967. doi: 10.1016/j.jmb.2023.167967. Epub 2023 Jan 18. J Mol Biol. 2023. PMID: 36681181 Review.
Cited by
-
VESPER: global and local cryo-EM map alignment using local density vectors.Nat Commun. 2021 Apr 7;12(1):2090. doi: 10.1038/s41467-021-22401-y. Nat Commun. 2021. PMID: 33828103 Free PMC article.
-
Fast and automated protein-DNA/RNA macromolecular complex modeling from cryo-EM maps.Brief Bioinform. 2023 Mar 19;24(2):bbac632. doi: 10.1093/bib/bbac632. Brief Bioinform. 2023. PMID: 36682003 Free PMC article.
-
Haruspex: A Neural Network for the Automatic Identification of Oligonucleotides and Protein Secondary Structure in Cryo-Electron Microscopy Maps.Angew Chem Int Ed Engl. 2020 Aug 24;59(35):14788-14795. doi: 10.1002/anie.202000421. Epub 2020 May 11. Angew Chem Int Ed Engl. 2020. PMID: 32187813 Free PMC article.
-
Efficient Flexible Fitting Refinement with Automatic Error Fixing for De Novo Structure Modeling from Cryo-EM Density Maps.J Chem Inf Model. 2021 Jul 26;61(7):3516-3528. doi: 10.1021/acs.jcim.1c00230. Epub 2021 Jun 18. J Chem Inf Model. 2021. PMID: 34142833 Free PMC article.
-
Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps.Nat Commun. 2024 Oct 30;15(1):9367. doi: 10.1038/s41467-024-53721-4. Nat Commun. 2024. PMID: 39477926 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources