Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 6;120(14):147204.
doi: 10.1103/PhysRevLett.120.147204.

Field-Driven Quantum Criticality in the Spinel Magnet ZnCr_{2}Se_{4}

Affiliations

Field-Driven Quantum Criticality in the Spinel Magnet ZnCr_{2}Se_{4}

C C Gu et al. Phys Rev Lett. .

Abstract

We report detailed dc and ac magnetic susceptibilities, specific heat, and thermal conductivity measurements on the frustrated magnet ZnCr_{2}Se_{4}. At low temperatures, with an increasing magnetic field, this spinel material goes through a series of spin state transitions from the helix spin state to the spiral spin state and then to the fully polarized state. Our results indicate a direct quantum phase transition from the spiral spin state to the fully polarized state. As the system approaches the quantum criticality, we find strong quantum fluctuations of the spins with behaviors such as an unconventional T^{2}-dependent specific heat and temperature-independent mean free path for the thermal transport. We complete the full phase diagram of ZnCr_{2}Se_{4} under the external magnetic field and propose the possibility of frustrated quantum criticality with extended densities of critical modes to account for the unusual low-energy excitations in the vicinity of the criticality. Our results reveal that ZnCr_{2}Se_{4} is a rare example of a 3D magnet exhibiting a field-driven quantum criticality with unconventional properties.

PubMed Disclaimer

LinkOut - more resources