Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2018;51(6):e7180.
doi: 10.1590/1414-431x20187180. Epub 2018 Apr 19.

Influence of expiratory positive airway pressure on cardiac autonomic modulation at rest and in submaximal exercise in COPD patients

Affiliations
Randomized Controlled Trial

Influence of expiratory positive airway pressure on cardiac autonomic modulation at rest and in submaximal exercise in COPD patients

C da L Goulart et al. Braz J Med Biol Res. 2018.

Abstract

The aim of this study was to evaluate the effect of expiratory positive airway pressure (EPAP) on heart rate variability (HRV) indices at rest and during 6-min walk test (6MWT) in chronic obstructive pulmonary disease (COPD) patients. Fifteen moderate to severe COPD patients were randomized and evaluated with and without (Non-EPAP) a 5 cmH2O EPAP device. Respiratory rate (RR) was collected at rest (5 min), during the 6MWT (5 min), and at recovery (5 min). Indices of HRV were computed in the time domain, in the frequency domain, and nonlinear analysis. For EPAP and Non-EPAP during the 6MWT, we found an increased mean heart rate (HR) (P=0.001; P=0.001) while mean RR (P=0.001; P=0.015) and RR tri index decreased (P=0.006; P=0.028). Peripheral oxygen saturation (P=0.019) increased at rest only in the EPAP group. In EPAP, correlations were found between forced expiratory volume in 1 s (FEV1) and low frequency (LF) sympathetic tonus (P=0.05; r=-0.49), FEV1 and high frequency (HF) parasympathetic tonus at rest (P=0.05; r=0.49), lactate at rest and LF during the 6MWT (P=0.02; r=-0.57), and lactate at rest and HF during 6MWT (P=0.02; r=0.56). Through a linear regression model, we found that lactate at rest explained 27% of the alterations of LF during 6MWT. The use of 5 cmH2O EPAP improved autonomic cardiac modulation and its complexity at rest in COPD patients. Although it did not influence the performance of the 6MWT, the EPAP device caused alterations in resting lactate concentration with an effect on sympatho-vagal control during the test.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.. Flowchart of sampling and study phases. COPD: chronic obstructive pulmonary disease; 6MWT: 6-min walk test; EPAP: positive airways pressure.
Figure 2.
Figure 2.. A, Peripheral oxygen saturation, and B, distance walked in the 6 min walk test in positive airways pressure (EPAP) and Non-EPAP groups of chronic obstructive pulmonary disease patients. Student's t-test was used for statistical analyses. Vertical lines indicate means and SDs.
Figure 3.
Figure 3.. Relationship between lung function and heart rate variability index at rest. A, Negative correlation between LF (nu) and FEV1 (% of predicted). B, Positive correlation between HF (nu) and FEV1 (% of predicted). The Pearson correlation analysis was used for statistical analyses. FEV1: forced expiratory volume in 1 s; LF: low frequency; HF: high frequency; nu: normalized units.
Figure 4.
Figure 4.. Relationship between lactate and heart rate variability index during 6-min walk test (6MWT). A, Negative correlation between LF (nu) and lactate at rest (mmol/L) with expiratory positive airway pressure (EPAP). B, Positive correlation between HF (nu) during 6MWT and lactate (mmol/L) at rest with EPAP. C, Positive correlation between LF (nu) during 6MWT and lactate (mmol/L) at rest in Non-EPAP. D, Negative correlation between HF (nu) during 6MWT and lactate (mmol/L) at rest in Non-EPAP. Pearson correlation analysis was performed. LF: low frequency; HF: high frequency; nu; normalized units.

Similar articles

Cited by

References

    1. Pinsky MR. Cardiovascular issues in respiratory care. Chest. 2005;128:592S–597S. doi: 10.1378/chest.128.5_suppl_2.592S. - DOI - PubMed
    1. Reis MS, Sampaio LM, Lacerda D, De Oliveira LV, Pereira GB, Pantoni CB, et al. Acute effects of different levels of continuous positive airway pressure on cardiac autonomic modulation in chronic heart failure and chronic obstructive pulmonary disease. Arch Med Sci. 2010;6:719–727. doi: 10.5114/aoms.2010.17087. - DOI - PMC - PubMed
    1. Mazzuco A, Medeiros WM, Sperling MPR, de Souza AS, Alencar MC, Arbex FF, et al. Relationship between linear and nonlinear dynamics of heart rate and impairment of lung function in COPD patients. Int J Chron Obstruct Pulmon Dis. 2015;10:1651–1661. doi: 10.2147/COPD.S81736. - DOI - PMC - PubMed
    1. Roque AL, Valenti VE, Massetti T, da Silva TD, Monteiro CB, Oliveira FR, et al. Chronic obstructive pulmonary disease and heart rate variability: a literature update. Int Arch Med. 2014;7:43. doi: 10.1186/1755-7682-7-43. - DOI - PMC - PubMed
    1. Borghi-Silva A, Arena R, Castello V, Simões RP, Martins LEB, Catai AM, et al. Aerobic exercise training improves autonomic nervous control in patients with COPD. Respir Med. 2009;103:1503–1510. doi: 10.1016/j.rmed.2009.04.015. - DOI - PubMed

Publication types