Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Apr 24;16(5):138.
doi: 10.3390/md16050138.

Marine Omega-3 Fatty Acids, Complications of Pregnancy and Maternal Risk Factors for Offspring Cardio-Metabolic Disease

Affiliations
Review

Marine Omega-3 Fatty Acids, Complications of Pregnancy and Maternal Risk Factors for Offspring Cardio-Metabolic Disease

Melinda Phang et al. Mar Drugs. .

Abstract

Marine omega-3 polyunsaturated fatty acids (n-3 PUFA) are important nutrients during periods of rapid growth and development in utero and infancy. Maternal health and risk factors play a crucial role in birth outcomes and subsequently offspring cardio-metabolic health. Evidence from observational studies and randomized trials have suggested a potential association of maternal intake of marine n-3 PUFAs during pregnancy with pregnancy and birth outcomes. However, there is inconsistency in the literature on whether marine n-3 PUFA supplementation during pregnancy can prevent maternal complications of pregnancy. This narrative literature review summarizes recent evidence on observational and clinical trials of marine n-3 PUFA intake on maternal risk factors and effects on offspring cardio-metabolic health. The current evidence generally does not support a role of maternal n-3 PUFA supplementation in altering the incidence of gestational diabetes, pregnancy-induced hypertension, or pre-eclampsia. It may be that benefits from marine n-3 PUFA supplementation are more pronounced in high-risk populations, such as women with a history of complications of pregnancy, or women with low marine n-3 PUFA intake. Discrepancies between studies may be related to differences in study design, dosage, fatty acid interplay, and length of treatment. Further prospective double-blind studies are needed to clarify the impact of long-chain marine n-3 PUFAs on risk factors for cardio-metabolic disease in the offspring.

Keywords: cardio-metabolic disease; marine omega-3 fatty acids; maternal risk factors.

PubMed Disclaimer

Conflict of interest statement

M.P. and M.R.S. are receiving in-kind support from Swisse Wellness Pty Ltd.

References

    1. Barker D.J. In utero programming of chronic disease. Clin. Sci. 1998;95:115–128. doi: 10.1042/cs0950115. - DOI - PubMed
    1. Palinski W. Effect of maternal cardiovascular conditions and risk factors on offspring cardiovascular disease. Circulation. 2014;129:2066–2077. doi: 10.1161/CIRCULATIONAHA.113.001805. - DOI - PMC - PubMed
    1. Barker D.J., Gluckman P.D., Godfrey K.M., Harding J.E., Owens J.A., Robinson J.S. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341:938–941. doi: 10.1016/0140-6736(93)91224-A. - DOI - PubMed
    1. Schulz L.C. The Dutch Hunger Winter and the developmental origins of health and disease. Proc. Natl. Acad. Sci. USA. 2010;107:16757–16758. doi: 10.1073/pnas.1012911107. - DOI - PMC - PubMed
    1. Hult M., Tornhammar P., Ueda P., Chima C., Bonamy A.K., Ozumba B., Norman M. Hypertension, diabetes and overweight: Looming legacies of the Biafran famine. PLoS ONE. 2010;5:e13582. doi: 10.1371/journal.pone.0013582. - DOI - PMC - PubMed

MeSH terms

Substances

LinkOut - more resources