Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 27;13(4):e0196015.
doi: 10.1371/journal.pone.0196015. eCollection 2018.

One step generation of customizable gRNA vectors for multiplex CRISPR approaches through string assembly gRNA cloning (STAgR)

Affiliations

One step generation of customizable gRNA vectors for multiplex CRISPR approaches through string assembly gRNA cloning (STAgR)

Christopher T Breunig et al. PLoS One. .

Abstract

Novel applications based on the bacterial CRISPR system make genetic, genomic, transcriptional and epigenomic engineering widely accessible for the first time. A significant advantage of CRISPR over previous methods is its tremendous adaptability due to its bipartite nature. Cas9 or its engineered variants define the molecular effect, while short gRNAs determine the targeting sites. A majority of CRISPR approaches depend on the simultaneous delivery of multiple gRNAs into single cells, either as an essential precondition, to increase responsive cell populations or to enhance phenotypic outcomes. Despite these requirements, methods allowing the efficient generation and delivery of multiple gRNA expression units into single cells are still sparse. Here we present STAgR (String assembly gRNA cloning), a single step gRNA multiplexing system, that obtains its advantages by employing the N20 targeting sequences as necessary homologies for Gibson assembly. We show that STAgR allows reliable and cost-effective generation of vectors with high numbers of gRNAs enabling multiplexed CRISPR approaches. Moreover, STAgR is easily customizable, as vector backbones as well as gRNA structures, numbers and promoters can be freely chosen and combined. Finally, we demonstrate STAgR's widespread functionality, its efficiency in multi-targeting approaches, using it for both, genome and transcriptome editing, as well as applying it in vitro and in vivo.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. The STAgR protocol.
(A) An Overview over STAgR procedure. STAgR allows simple and fast generation of multiplexing vectors in one overnight reaction. STAgR is also highly customizable as diverse strings and vectors can be used to assemble expression cassettes with different promoters and gRNA scaffolds. (B) Sequences of overhang primers used for generation of STAgR vectors.
Fig 2
Fig 2. Functional validation of STAgR.
(A) Colony PCR of a 4xSTAgR reaction (using a string sequence containing a hU6 promoter and a canonical gRNA scaffold). 24 bacterial colonies are shown, of which six present the amplicon size indicative of the full length reaction (1596 bp). Additionally marked are amplicon sizes indicative of two (823 bp) and single gRNAs (458 bp). (B) Quantification of cloning efficiencies from three different 4xSTAgR reactions (n = 130). (C) A schematic showing constructs used for functional validation of STAgR gRNAs. A gRNA targeting the GFP ORF was either delivered in a single gRNA expression vector or on each of four different positions in STAgR vectors. (D) Functional validation of STAgR vectors shown in Fig 2C. HeLa cells stably expressing d2GFP and Cas9 have been transfected with vectors depicted above. Flow cytometry indicates that STAgR constructs are similarly efficient in mutating the ORF of GFP compared to a single gRNA vector. (E) Colony PCR of a 4xSTAgR reaction using four different promoters and SAM loop scaffolds. 24 bacterial colonies are shown, of which seven colonies incorporated the amplicon size indicative of the full length reaction (2043 bp). Shorter amplicons are indicative of gRNA subsets, which vary in size, depending on the incorporated promoter.
Fig 3
Fig 3. Application of STAgR.
(A) Colony PCR of a 6xSTAgR reaction using two different promoters as well as both, the canonical and the SAM loop gRNA scaffold. The gel shows a colony PCR of 22 bacterial colonies, of which seven showed the amplicon indicative of the full length STAgR reaction (2444bp). (B) Exemplary colony PCR of STAgR constructs with 0 to 8 gRNA expression cassettes. (C) A STAgR plasmid containing four gRNAs or a mixture of four single gRNA plasmids have been transfected into P19 Cells expressing dCas9-VPR. (D) After 7 days mRNA was extracted and transcript levels of target genes have been compared via qPCR. Error bars depict standard errors of the mean.
Fig 4
Fig 4. In vivo application of STAgR.
STAgR constructs allow simultaneous genetic deletions in vivo. Above: Imaging setup from whole mount adult zebrafish brains. Below: 3D reconstructions of whole mount Tg(gfap:GFP) zebrafish telencephali (depicted from above). GFP+ and Sox2+ ependymoglia have been electroporated with STAgR targeting GFP and Sox2 (above) or a vector control (below) together with a Cas9 expression vector. Scale bar represents 50μm.

References

    1. Ledford H. CRISPR: gene editing is just the beginning. Nature. 2016;531(7593):156–9. doi: 10.1038/531156a . - DOI - PubMed
    1. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. doi: 10.1126/science.1231143 - DOI - PMC - PubMed
    1. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. eLife. 2013;2:e00471 doi: 10.7554/eLife.00471 - DOI - PMC - PubMed
    1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. doi: 10.1126/science.1225829 . - DOI - PMC - PubMed
    1. Köferle A, Stricker SH, Beck S. Brave new epigenomes: the dawn of epigenetic engineering. Genome Med. 2015;7(1):59 doi: 10.1186/s13073-015-0185-8 - DOI - PMC - PubMed

Publication types

Substances