Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 15:636:282-298.
doi: 10.1016/j.scitotenv.2018.04.268. Epub 2018 Apr 27.

Copper distribution in European topsoils: An assessment based on LUCAS soil survey

Affiliations
Free article

Copper distribution in European topsoils: An assessment based on LUCAS soil survey

Cristiano Ballabio et al. Sci Total Environ. .
Free article

Abstract

Copper (Cu) distribution in soil is influenced by climatic, geological and pedological factors. Apart from geological sources and industrial pollution, other anthropogenic sources, related to the agricultural activity, may increase copper levels in soils, especially in permanent crops such as olive groves and vineyards. This study uses 21,682 soil samples from the LUCAS topsoil survey to investigate copper distribution in the soils of 25 European Union (EU) Member States. Generalized Linear Models (GLM) were used to investigate the factors driving copper distribution in EU soils. Regression analysis shows the importance of topsoil properties, land cover and climate in estimating Cu concentration. Meanwhile, a copper regression model confirms our hypothesis that different agricultural management practices have a relevant influence on Cu concentration. Besides the traditional use of copper as a fungicide for treatments in several permanent crops, the combined effect of soil properties such as high pH, soil organic carbon and clay, with humid and wet climatic conditions favours copper accumulation in soils of vineyards and tree crops. Compared to the overall average Cu concentration of 16.85 mg kg-1, vineyards have the highest mean soil Cu concentration (49.26 mg kg-1) of all land use categories, followed by olive groves and orchards. Gaussian Process Regression (GPR) combined with kriging were used to map copper concentration in topsoils and to evidence the presence of outliers. GPR proved to be performant in predicting Cu concentration, especially in combination with kriging, accounting for 66% of Cu deviance. The derived maps are novel as they include information about the importance of topsoil properties in the copper mapping process, thus improving its accuracy. Both models highlight the influence of land management practices in copper concentration and the strong correlation between topsoil copper and vineyards.

Keywords: Copper; Gaussian Process Regression; Heavy metals; LUCAS; Regression kriging; Soil contamination; Vineyards.

PubMed Disclaimer

LinkOut - more resources