Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Apr 28;24(16):1708-1724.
doi: 10.3748/wjg.v24.i16.1708.

Naturally occurring hepatitis B virus reverse transcriptase mutations related to potential antiviral drug resistance and liver disease progression

Affiliations
Review

Naturally occurring hepatitis B virus reverse transcriptase mutations related to potential antiviral drug resistance and liver disease progression

Yu-Min Choi et al. World J Gastroenterol. .

Abstract

The annual number of deaths caused by hepatitis B virus (HBV)-related disease, including cirrhosis and hepatocellular carcinoma (HCC), is estimated as 887000. The reported prevalence of HBV reverse transcriptase (RT) mutation prior to treatment is varied and the impact of preexisting mutations on the treatment of naïve patients remains controversial, and primarily depends on geographic factors, HBV genotypes, HBeAg serostatus, HBV viral loads, disease progression, intergenotypic recombination and co-infection with HIV. Different sensitivity of detection methodology used could also affect their prevalence results. Several genotype-dependent HBV RT positions that can affect the emergence of drug resistance have also been reported. Eight mutations in RT (rtL80I, rtD134N, rtN139K/T/H, rtY141F, rtM204I/V, rtF221Y, rtI224V, and rtM309K) are significantly associated with HCC progression. HBeAg-negative status, low viral load, and genotype C infection are significantly related to a higher frequency and prevalence of preexisting RT mutations. Preexisting mutations are most frequently found in the A-B interdomain of RT which overlaps with the HBsAg "a" determinant region, mutations of which can lead to simultaneous viral immune escape. In conclusion, the presence of baseline RT mutations can affect drug treatment outcomes and disease progression in HBV-infected populations via modulation of viral fitness and host-immune responses.

Keywords: Hepatitis B virus; Hepatocellular carcinoma; Polymerase; Preexisting mutations; Reverse transcriptase.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: There was no conflict of interest.

Figures

Figure 1
Figure 1
Pooled incidence and distribution of preexisting primary and secondary reverse transcriptase mutations compiled using data from 50 previous studies. The distribution and overall incidence of RT region is presented; numbers indicate the pooled incidence rate of the RT mutation in a total of 8,435 treatment-naïve patients. aPre-existing RT mutation associated with the progression of HCC in treatment-naïve patients.
Figure 2
Figure 2
Pooled incidence and distribution of preexisting putative and pretreatment reverse transcriptase mutations compiled using data from 50 previous studies. The distribution and overall incidence of RT region is presented; numbers indicate the pooled incidence rate of the RT mutation in a total of 8435 treatment-naïve patients. aPre-existing RT mutation associated with the progression of HCC in treatment-naïve patients; bA-B interdomain region.
Figure 3
Figure 3
Schematic representation indicating the role of preexisting hepatitis B virus reverse transcriptase mutations in liver disease progression and treatment outcomes. HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma; ASC: Asymptomatic carriers; CHB: Chronic hepatitis B; HIV: Human immunodeficiency virus.

Similar articles

Cited by

References

    1. Beasley RP, Hwang LY, Lee GC, Lan CC, Roan CH, Huang FY, Chen CL. Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B immune globulin and hepatitis B vaccine. Lancet. 1983;2:1099–1102. - PubMed
    1. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–171. - PMC - PubMed
    1. Nevens F, Main J, Honkoop P, Tyrrell DL, Barber J, Sullivan MT, Fevery J, De Man RA, Thomas HC. Lamivudine therapy for chronic hepatitis B: a six-month randomized dose-ranging study. Gastroenterology. 1997;113:1258–1263. - PubMed
    1. Marcellin P, Chang TT, Lim SG, Tong MJ, Sievert W, Shiffman ML, Jeffers L, Goodman Z, Wulfsohn MS, Xiong S, et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med. 2003;348:808–816. - PubMed
    1. Rivkin A. Entecavir: a new nucleoside analogue for the treatment of chronic hepatitis B. Drugs Today (Barc) 2007;43:201–220. - PubMed

Substances