Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2018 Apr 23:15:18.
doi: 10.1186/s12970-018-0222-2. eCollection 2018.

Effects of n-3 fatty acids and exercise on oxidative stress parameters in type 2 diabetic: a randomized clinical trial

Affiliations
Randomized Controlled Trial

Effects of n-3 fatty acids and exercise on oxidative stress parameters in type 2 diabetic: a randomized clinical trial

Ana Paula Trussardi Fayh et al. J Int Soc Sports Nutr. .

Abstract

Background: The relationship between diabetes and oxidative stress has been previously reported. Exercise represents a useful non-pharmacological strategy for the treatment in type 2 diabetic (T2DM) patients, but high intensity exercise can induce a transient inflammatory state and increase oxidative stress. Nutritional strategies that may contribute to the reduction of oxidative stress induced by acute exercise are necessary. The aim of this study was to examine if n-3 PUFA supplementation intervention can attenuate the inflammatory response and oxidative stress associated with high intensity exercise in this population. As a primary outcome, lipoperoxidation measurements (TBARS and F2-isoprostanes) were selected.

Methods: Thirty T2DM patients, without chronic complications, were randomly allocated into two groups: placebo (gelatin capsules) or n-3 PUFA (capsules containing 180 mg of eicosapentaenoic acid and 120 mg of docosahexaenoic acid). Blood samples were collected fasting before and after 8 weeks supplementation. In the beginning and at the end of protocol, an acute exercise was performed (treadmill), and new blood samples were collected before and immediately after the exercise for measurements of oxidative stress and high-sensitivity C-reactive protein (hs-CRP).

Results: After the supplementation period, a decrease in triglycerides levels was observed only in n-3 PUFA supplementation group (mean difference and 95% CI of 0.002 (0.000-0.004), p = 0.005). Supplementation also significantly reduced TRAP levels after exercise (mean difference and 95% CI to 9641 (- 20,068-39,351) for - 33,884 (- 56,976 - -10,793), p = 0.004, Cohen's d effect size = 1.12), but no significant difference was observed in n-3 PUFA supplementation group in lipoperoxidation parameters as TBARS (mean difference and 95% CI to - 3.8 (- 10-2.4) for - 2.9 (- 1.6-7.4) or F2-isoprostanes (mean difference and 95% CI -0.05 (- 0.19-0.10) for - 0.02 (- 0.19-0.16), p > 0.05 for both.

Conclusion: PUFA n-3 supplementation reduced triglycerides as well as TRAP levels after exercise, without a significant effect on inflammatory and oxidative stress markers.This study is registered at ClinicalTrials.gov with the registration number of NCT03182712.

Keywords: Acute exercise; Inflammation; Omega-3; Oxidative stress; Type 2 diabetes.

PubMed Disclaimer

Conflict of interest statement

This study was approved by the HCPA Ethics and Research Committee (06–222). The study was conducted in accordance with the requirements of the declarations of Helsinki. All participants were informed about the procedures and signed an informed consent form prior to enrollment in the study.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart of experimental sessions
Fig. 2
Fig. 2
Flow diagram of patient recruitment and randomization

Similar articles

Cited by

References

    1. Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 2016;118(11):1808–1829. doi: 10.1161/CIRCRESAHA.116.306923. - DOI - PMC - PubMed
    1. Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep. 2014;14(1):453. doi: 10.1007/s11892-013-0453-1. - DOI - PMC - PubMed
    1. Newsholme P, et al. Exercise and possible molecular mechanisms of protection from vascular disease and diabetes: the central role of ROS and nitric oxide. Clin Sci (Lond). 2009, 118(5):341–9. - PubMed
    1. Kesavulu MM, et al. Effect of omega-3 fatty acids on lipid peroxidation and antioxidant enzyme status in type 2 diabetic patients. Diabetes Metab. 2002;28(1):20–26. - PubMed
    1. Peerapatdit T, et al. Antioxidant status and lipid peroxidation end products in patients of type 1 diabetes mellitus. J Med Assoc Thai. 2006;89(Suppl 5):S141–S146. - PubMed

Publication types

Associated data