Proximal Humerus Fracture 3-D Modeling
- PMID: 29719012
- DOI: 10.12788/ajo.2018.0023
Proximal Humerus Fracture 3-D Modeling
Abstract
The objective of this study is to determine the reproducibility and feasibility of using 3-dimensional (3-D) computer simulation of proximal humerus fracture computed tomography (CT) scans for fracture reduction. We hypothesized that anatomic reconstruction with 3-D models would be anatomically accurate and reproducible. Preoperative CT scans of 28 patients with 3- and 4-part (AO classification 11-B1, 11-B2, 11-C1, 11-C2) proximal humerus fractures who were treated by hemiarthroplasty were converted into 3-D computer models. The displaced fractured fragments were anatomically reduced with computer simulation by 2 fellowship-trained shoulder surgeons, and measurements were made of the reconstructed proximal humerus. The measurements of the reconstructed models had very good to excellent interobserver and intraobserver reliability. The reconstructions of these humerus fractures showed interclass correlation coefficients ranging from 0.71 to 0.93 between 1 observer and from 0.82 to 0.98 between 2 different observers. The fracture reduction was judged against normal proximal humerus geometry to determine reduction accuracy. The 3-D modeling techniques used to reconstruct 3- and 4-part proximal humerus fractures were reliable and accurate. This technique of modeling and reconstructing proximal humerus fractures could be used to enhance the preoperative planning of open reduction and internal fixation or hemiarthroplasty for 3- and 4-part proximal humerus fractures.
Conflict of interest statement
Authors’ Disclosure Statement: Dr. Levine reports that he is on the board or a committee member of American Shoulder and Elbow Surgeons; is on the editorial or governing board of the Journal of the American Academy of Orthopaedic Surgeons; and is an unpaid consultant to Zimmer Biomet. Dr. Jobin reports that he is a paid consultant and a paid presenter or speaker for Acumed, LLC; is on the board or a committee member of American Shoulder and Elbow Surgeons; is a paid consultant to DePuy Synthes, a Johnson & Johnson Company; is on the editorial or governing board of the Journal of the American Academy of Orthopaedic Surgeons; is a paid presenter or speaker for Tornier; is a paid consultant for Wright Medical Technology, Inc.; and is a paid consultant and a paid presenter or speaker for Zimmer Biomet. Dr. Ahmad reports that he receives intellectual property royalties from, is a paid consultant to, and provides research support to Arthrex; receives stock or stock options from At Peak; receives publishing royalties, and financial or material support from Lead Player; receives research support from Major League Baseball; is on the editorial or governing board for Orthopedics Today; and receives research support from Stryker. The other authors report no actual or potential conflict of interest in relation to this article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous