Glucose transporter 1 expression as a marker of prognosis in oesophageal adenocarcinoma
- PMID: 29719622
- PMCID: PMC5915089
- DOI: 10.18632/oncotarget.24906
Glucose transporter 1 expression as a marker of prognosis in oesophageal adenocarcinoma
Abstract
Background: The current TNM staging system for oesophageal adenocarcinoma (OAC) has limited ability to stratify patients and inform clinical management following neo-adjuvant chemotherapy and surgery.
Results: Functional genomic analysis of the gene expression data using Gene Set Enrichment Analysis (GSEA) identified GLUT1 as putative prognostic marker in OAC.In the discovery cohort GLUT1 positivity was observed in 114 patients (80.9%) and was associated with poor overall survival (HR 2.08, 95% CI 1.1-3.94; p=0.024) following multivariate analysis. A prognostic model incorporating GLUT1, CRM and nodal status stratified patients into good, intermediate and poor prognosis groups (p< 0.001) with a median overall survival of 16.6 months in the poorest group.In the validation set 182 patients (69.5%) were GLUT1 positive and the prognostic model separated patients treated with neo-adjuvant chemotherapy and surgery (p<0.001) and surgery alone (p<0.001) into three prognostic groups.
Patients and methods: Transcriptional profiling of 60 formalin fixed paraffin-embedded (FFPE) biopsies was performed. GLUT1 immunohistochemical staining was assessed in a discovery cohort of 141 FFPE OAC samples treated with neo-adjuvant chemotherapy and surgery at the Northern Ireland Cancer Centre from 2004-2012. Validation was performed in 262 oesophageal adenocarcinomas collected at four OCCAMS consortium centres. The relationship between GLUT1 staining, T stage, N stage, lymphovascular invasion and circumferential resection margin (CRM) status was assessed and a prognostic model developed using Cox Proportional Hazards.
Conclusions: GLUT1 staining combined with CRM and nodal status identifies a poor prognosis sub-group of OAC patients and is a novel prognostic marker following potentially curative surgical resection.
Keywords: biomarker; glucose transporter 1; hypoxia; oesophageal cancer; prognostic.
Conflict of interest statement
CONFLICTS OF INTEREST The authors have no conflicts of interest to declare.
Figures



References
-
- Cancer Research UK. Oesophageal cancer statistics. [cited 2017 Aug 1]. Available 2017 August 1, from http://www.cancerresearchuk.org/health-professional/oesophageal-cancer-s....
-
- Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white americans by sex, stage, and age. J Natl Cancer Inst. 2008;100:1184–7. https://doi.org/10.1093/jnci/djn211. - DOI - PMC - PubMed
-
- Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, Smith DB, Langley RE, Verma M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20. https://doi.org/10.1056/NEJMoa055531. - DOI - PubMed
-
- van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, Richel DJ, Nieuwenhuijzen GA, Hospers GA, Bonenkamp JJ, Cuesta MA, Blaisse RJ, Busch OR, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366:2074–84. https://doi.org/10.1056/NEJMoa1112088. - DOI - PubMed
-
- Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8. https://doi.org/10.1038/nature05610. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous