Remote Asymmetric Induction Reactions using a E, E-Vinylketene Silyl N, O-Acetal and the Wide Range Stereocontrol Strategy for the Synthesis of Polypropionates
- PMID: 29726677
- DOI: 10.1021/acs.accounts.8b00125
Remote Asymmetric Induction Reactions using a E, E-Vinylketene Silyl N, O-Acetal and the Wide Range Stereocontrol Strategy for the Synthesis of Polypropionates
Abstract
The construction of libraries of acyclic polyketides remains a challenging topic, mostly due to the difficulties associated with finding the right balance between diversity and brevity for the synthetic routes leading to polyketides. Recently, relatively short methods have been developed and applied to the synthesis of natural products. However, these short routes often suffer from limited diversity with respect to the arrangement of functional groups and stereochemistry, as these usually require reactions that direct multiple functional groups simultaneously in one step. Therefore, methods that combine a small number of reaction steps with structural diversity remain an attractive research target for the construction of acyclic polyketide libraries. In 2004, we reported a remote asymmetric induction reaction using chiral vinylketene silyl N, O-acetal 1, which is commensurate to an anti-selective vinylogous Mukaiyama aldol reaction. Ever since, this reaction has been applied to the synthesis of numerous natural products, as this synthetic route is short and efficient on account of the simultaneous introduction of both asymmetric centers and the multiply functionalized carbon chain. Recently, we have developed a variety of this remote asymmetric induction reaction based on the E, E-vinylketene N, O-acetal 1, which includes syn-selective vinylogous Mukaiyama aldol reactions, as well as alkylation, acylation, and bromination reaction. These reactions provide polypropionates in a highly stereoselective manner. The proposed transition states of these reactions are discussed in this Account. Additionally, we have developed a new short synthesis of polypropionates by combining reactions for the remote asymmetric induction and the functionalization of double bonds (wide-range stereocontrol, WRS). The remote asymmetric induction reaction simultaneously constructs the stereogenic centers at the central part of the products and introduces the α,β-unsaturated imide, while the new strategy is based on the initial construction of the central part of the molecule and a subsequent functionalization of the surroundings (WRS). This strategy successfully furnished stereoisomers in a few steps, and the stereodivergent synthesis of 2,4,6-trimethyloctanoic acid derivatives was accomplished. This strategy should also be feasible to construct an acyclic polyketide library. Moreover, we applied this method to the concise synthesis of natural products. In this Account, the development of remote asymmetric induction reactions and the new WRS strategy are described. Applications of the WRS strategy as well as reactions for the stereodivergent synthesis of polypropionates and natural products are also described. The aforementioned acyclic polyketide library should be constructed in the future with the help of the WRS strategy and become a powerful tool in drug discovery.
Similar articles
-
Very Recent Advances in Vinylogous Mukaiyama Aldol Reactions and Their Applications to Synthesis.Molecules. 2019 Aug 22;24(17):3040. doi: 10.3390/molecules24173040. Molecules. 2019. PMID: 31443344 Free PMC article. Review.
-
Remote asymmetric induction with vinylketene silyl n,o-acetal.J Am Chem Soc. 2004 Oct 27;126(42):13604-5. doi: 10.1021/ja0465855. J Am Chem Soc. 2004. PMID: 15493903
-
Syn Selective Vinylogous Mukaiyama Aldol Reaction Using Z,E-Vinylketene N,O-Acetal with Acetals.Org Lett. 2017 Jan 6;19(1):250-253. doi: 10.1021/acs.orglett.6b03549. Epub 2016 Dec 21. Org Lett. 2017. PMID: 28001414
-
Remote Asymmetric Bromination Reaction with Vinylketene Silyl N,O-Acetal and Its Application to Total Synthesis of Pellasoren A.Org Lett. 2017 May 5;19(9):2394-2397. doi: 10.1021/acs.orglett.7b00920. Epub 2017 Apr 21. Org Lett. 2017. PMID: 28430451
-
Mukaiyama aldol reaction: an effective asymmetric approach to access chiral natural products and their derivatives/analogues.RSC Adv. 2023 Nov 8;13(47):32975-33027. doi: 10.1039/d3ra05058k. eCollection 2023 Nov 7. RSC Adv. 2023. PMID: 38025859 Free PMC article. Review.
Cited by
-
Lewis acid-catalyzed asymmetric reactions of β,γ-unsaturated 2-acyl imidazoles.Nat Commun. 2020 Aug 3;11(1):3869. doi: 10.1038/s41467-020-17681-9. Nat Commun. 2020. PMID: 32747706 Free PMC article.
-
Very Recent Advances in Vinylogous Mukaiyama Aldol Reactions and Their Applications to Synthesis.Molecules. 2019 Aug 22;24(17):3040. doi: 10.3390/molecules24173040. Molecules. 2019. PMID: 31443344 Free PMC article. Review.
-
Cu-catalyzed asymmetric addition of alcohols to β,γ-alkynyl-α-imino esters for the construction of linear chiral N,O-ketals.Nat Commun. 2022 Jan 20;13(1):400. doi: 10.1038/s41467-022-28002-7. Nat Commun. 2022. PMID: 35058446 Free PMC article.
-
From Target-Oriented to Motif-Oriented: A Case Study on Nannocystin Total Synthesis.Molecules. 2020 Nov 15;25(22):5327. doi: 10.3390/molecules25225327. Molecules. 2020. PMID: 33203102 Free PMC article. Review.
-
Discovery of a nitroaromatic nannocystin with potent in vivo anticancer activity against colorectal cancer by targeting AKT1.Acta Pharmacol Sin. 2024 May;45(5):1044-1059. doi: 10.1038/s41401-024-01231-w. Epub 2024 Feb 7. Acta Pharmacol Sin. 2024. PMID: 38326625 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous