Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Oct;65(4):1729-35.
doi: 10.1152/jappl.1988.65.4.1729.

Atrial natriuretic peptide lowers pulmonary arterial pressure in hypoxia-adapted rats

Affiliations

Atrial natriuretic peptide lowers pulmonary arterial pressure in hypoxia-adapted rats

H K Jin et al. J Appl Physiol (1985). 1988 Oct.

Abstract

To test the hypothesis that atrial natriuretic peptide (ANP) has a direct vasodilator effect on the pulmonary vasculature that is enhanced in hypoxia-induced pulmonary hypertension in the rat, we determined the effects of ANP on mean pulmonary (MPAP) and systemic arterial pressure (MSAP) in intact conscious Sprague-Dawley rats exposed to 10% O2 or room air for 4 wk. Catheters were placed in the pulmonary artery through the right jugular vein by means of a closed-chest technique. MPAP and MSAP were monitored before and after intravenous injections of graded doses of ANP. ANP produced dose-related decreases in MPAP that were greater in the hypoxic group than in air controls. There were no significant between-group differences in the systemic depressor responses to ANP or in the ANP-induced reduction in cardiac output. ANP lowered MPAP significantly in isolated perfused lungs from both hypoxia-adapted and air control rats, and this effect was significantly greater in the hypoxic than the air control lungs. These data indicate that ANP lowers pulmonary arterial pressure in rats with hypoxia-induced pulmonary hypertension, mainly by a direct vasodilator effect on the pulmonary vasculature.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources