Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 15;34(20):3479-3487.
doi: 10.1093/bioinformatics/bty362.

Edge-group sparse PCA for network-guided high dimensional data analysis

Affiliations

Edge-group sparse PCA for network-guided high dimensional data analysis

Wenwen Min et al. Bioinformatics. .

Abstract

Motivation: Principal component analysis (PCA) has been widely used to deal with high-dimensional gene expression data. In this study, we proposed an Edge-group Sparse PCA (ESPCA) model by incorporating the group structure from a prior gene network into the PCA framework for dimension reduction and feature interpretation. ESPCA enforces sparsity of principal component (PC) loadings through considering the connectivity of gene variables in the prior network. We developed an alternating iterative algorithm to solve ESPCA. The key of this algorithm is to solve a new k-edge sparse projection problem and a greedy strategy has been adapted to address it. Here we adopted ESPCA for analyzing multiple gene expression matrices simultaneously. By incorporating prior knowledge, our method can overcome the drawbacks of sparse PCA and capture some gene modules with better biological interpretations.

Results: We evaluated the performance of ESPCA using a set of artificial datasets and two real biological datasets (including TCGA pan-cancer expression data and ENCODE expression data), and compared their performance with PCA and sparse PCA. The results showed that ESPCA could identify more biologically relevant genes, improve their biological interpretations and reveal distinct sample characteristics.

Availability and implementation: An R package of ESPCA is available at http://page.amss.ac.cn/shihua.zhang/.

Supplementary information: Supplementary data are available at Bioinformatics online.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources