Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct 1;164(4):257-264.
doi: 10.1093/jb/mvy047.

Involvement of partial EMT in cancer progression

Affiliations
Review

Involvement of partial EMT in cancer progression

Masao Saitoh. J Biochem. .

Abstract

The epithelial-mesenchymal transition (EMT) provides an outstanding example of cellular plasticity during embryonic development and cancer progression. During EMT in embryonic development, epithelial cells lose all vestiges of their epithelial origin and acquire a fully mesenchymal phenotype, known as complete EMT, which is typically characterized by a so-called cadherin switch. Conversely, during EMT in cancer progression, cancer cells that originate from epithelial cells exhibit both mesenchymal and epithelial characteristics, that is the hybrid E/M phenotype in a process known as partial EMT. Partial EMT in cancer cells is thought to enhance their invasive properties, generate circulating tumour cells and cancer stem cells, and promote resistance to anti-cancer drugs. These phenotypic changes are regulated by extracellular matrix components, exosomes and soluble factors, which regulate several transcription factors known as EMT transcription factors. In this review, I summarize our current understanding of the EMT program during cancer progression.

PubMed Disclaimer

LinkOut - more resources