Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 10:279:47-54.
doi: 10.1016/j.jbiotec.2018.05.003. Epub 2018 May 3.

Isolation and characterization of a halotolerant and protease-resistant α-galactosidase from the gut metagenome of Hermetia illucens

Affiliations

Isolation and characterization of a halotolerant and protease-resistant α-galactosidase from the gut metagenome of Hermetia illucens

Chang-Muk Lee et al. J Biotechnol. .

Abstract

Hermetia illucens is a voracious insect scavenger, decomposing food waste efficiently. To survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from H. illucens in our previous study (Lee et al., 2014). Functional screening of the library on carboxymethyl cellulose plates identified a fosmid clone the product of which displayed hydrolytic activity. Sequence analysis of the fosmid revealed a novel α-galactosidase gene, Agas2. The Agas2 gene is composed of 2,007 base pairs encoding 668 amino acids with a deduced 25 amino acid N-terminal signal peptide sequence. The conceptual translation and domain analysis of Agas2 showed the highest sequence identity (84%) with the putative α-galactosidase of Dysgonomonas sp. HGC4, exhibiting well-conserved domain homology with glycosyl hydrolase family 97. Phylogenetic analysis indicated that Agas2 may be a currently uncharacterized α-galactosidase. The recombinant protein, rAgas2, was successfully expressed in E. coli. rAgas2 showed the highest activity at 40 °C and pH 7.0. It displayed great pH stability within a pH range of 5-11 for 15 h at 4 °C. rAgas2 was highly stable under stringent conditions, including polar organic solvents, non-ionic detergents, salt, and proteases. rAgas2 hydrolyzed α-d-galactose substrates, showing the maximum enzymatic activity toward p-nitrophenyl α-d-galactopyranoside (specific activity 128.37 U/mg). However, rAgas2 did not hydrolyze substrates linked with β-glucose moieties. Overall, Agas2 may be an attractive candidate for the degradation of α-galactose family oligosaccharides in high-salt, protease-rich and high-organic-solvent processes.

Keywords: Alpha-galactosidase; Gut; Halotolerant; Hermetia illucens; Metagenome.

PubMed Disclaimer

MeSH terms

LinkOut - more resources