Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jun;14(6):394-410.
doi: 10.1038/s41581-018-0002-x.

Haemodialysis membranes

Affiliations
Review

Haemodialysis membranes

Claudio Ronco et al. Nat Rev Nephrol. 2018 Jun.

Abstract

Haemodialysis is an extracorporeal process in which the blood is cleansed via removal of uraemic retention products by a semipermeable membrane. Traditionally, dialysis membranes have been broadly classified on the basis of their composition (cellulosic or noncellulosic) and water permeability (low flux or high flux). However, advances in materials technology and polymer chemistry have led to the development of membranes with specific characteristics and refined properties that mandate a reconsideration of traditional membrane classification systems. For adequate characterization of these newer types of membranes, additional parameters are now relevant, including new permeability indices, the hydrophilic or hydrophobic nature of membranes, adsorption capacity and electrical potential. In this Review, we provide clinicians with an updated analysis of dialysis membranes and dialysers. We discuss the basic mechanisms that underlie solute and water removal in dialysis (that is, diffusion, convection, adsorption and ultrafiltration) in the context of treatments that use highly permeable membranes. Specifically, we highlight online haemodiafiltration and new therapies (for example, expanded haemodialysis) that utilize membranes designed to produce a high degree of internal filtration. Finally, we discuss the considerations that govern the clinically acceptable balance between large-solute clearance and albumin loss for extracorporeal therapies.

PubMed Disclaimer

Substances