Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr;27(2):94-102.
doi: 10.5607/en.2018.27.2.94. Epub 2018 Apr 26.

Odor Enrichment Increases Hippocampal Neuron Numbers in Mouse

Affiliations

Odor Enrichment Increases Hippocampal Neuron Numbers in Mouse

Zoltán Rusznák et al. Exp Neurobiol. 2018 Apr.

Abstract

The hippocampus and olfactory bulb incorporate new neurons migrating from neurogenic regions in the brain. Hippocampal atrophy is evident in numerous neurodegenerative disorders, and altered hippocampal neurogenesis is an early pathological event in Alzheimer's disease. We hypothesized that hippocampal neurogenesis is affected by olfactory stimuli through the neural pathway of olfaction-related memory. In this study, we exposed mice to novel pleasant odors for three weeks and then assessed the number of neurons, non-neuronal cells (mainly glia) and proliferating cells in the hippocampus and olfactory bulb, using the isotropic fractionator method. We found that the odor enrichment significantly increased the neuronal cell numbers in the hippocampus, and promoted cell proliferation and neurogenesis in the olfactory bulb. In contrast, the glial cell numbers remained unchanged in both of the regions. Our results suggest that exposure to novel odor stimuli promotes hippocampal neurogenesis and support the idea that enriched environments may delay the onset or slow down the progression of neurodegenerative disorders.

Keywords: Alzheimer's disease; hippocampus; neurodegeneration; neurogenesis; odor stimuli; olfactory bulb.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Cage setting for standard home cage and for odor stimulus pre-tests. (A) Mice were housed in standard home cage; red arrows indicate the location of mice. (B) Mice were tested to determine their “interest” in the odor provided; red arrow indicates odour stimulant bottle and blue arrows indicate empty vector bottles. (C) A typical enriched cage; red arrows indicate the location of mice.
Fig. 2
Fig. 2. Pictorial presentation of the experimental scheme.
Fig. 3
Fig. 3. The effect of odor exposure on the hippocampal cell constitution. (A) Odor exposure reforms the hippocampus by increasing the number of neurons and reducing the non-neuronal to neuronal cell ratio (indicated as “cellular constitution”). *p<0.05, **p<0.01. (B) Representative immunofluorescence images captured from the dentate gyrus of treated and control mice showing similar distribution and density of DCX-positive (red) and Ki-67-positive (green) cells. Arrowheads indicate Ki-67-positive cells. The scale bar in the last image applies to all other images.
Fig. 4
Fig. 4. An analysis of the effect of enriched environment on hippocampal cell constitution. *p<0.05, ***p<0.001.
Fig. 5
Fig. 5. The effect of odor exposure on the olfactory bulb. (A) The odor exposure increases the number of total cells, neurons, and proliferating cells, and reduces the ratio of non-neuronal to neuronal cell numbers (indicated as “cellular constitution”). *p<0.05, ***p<0.001. (B) Representative immunofluorescence images captured from the rostral migration stream of treated and control mice show the distribution and density of DCX-positive (red) and Ki-67-positive (green) cells. Arrowheads indicate Ki-67-positive cells. The scale bar in the last image applies to all other images.

Similar articles

Cited by

References

    1. Rusznák Z, Henskens W, Schofield E, Kim WS, Fu Y. Adult neurogenesis and gliogenesis: possible mechanisms for neurorestoration. Exp Neurobiol. 2016;25:103–112. - PMC - PubMed
    1. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–1317. - PubMed
    1. Lepousez G, Nissant A, Lledo PM. Adult neurogenesis and the future of the rejuvenating brain circuits. Neuron. 2015;86:387–401. - PubMed
    1. Cameron HA, Glover LR. Adult neurogenesis: beyond learning and memory. Annu Rev Psychol. 2015;66:53–81. - PMC - PubMed
    1. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisén J. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–1227. - PMC - PubMed