Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov 12;20(12):1566-1572.
doi: 10.1093/neuonc/noy072.

Temozolomide for immunomodulation in the treatment of glioblastoma

Affiliations
Review

Temozolomide for immunomodulation in the treatment of glioblastoma

Aida Karachi et al. Neuro Oncol. .

Abstract

Temozolomide is the most widely used chemotherapy for patients with glioblastoma (GBM) despite the fact that approximately half of treated patients have temozolomide resistance and all patients eventually fail therapy. Due to the limited efficacy of existing therapies, immunotherapy is being widely investigated for patients with GBM. However, initial immunotherapy trials in GBM patients have had disappointing results as monotherapy. Therefore, combinatorial treatment strategies are being investigated. Temozolomide has several effects on the immune system that are dependent on mode of delivery and the dosing strategy, which may have unpredicted effects on immunotherapy. Here we summarize the immune modulating role of temozolomide alone and in combination with immunotherapies such as dendritic cell vaccines, T-cell therapy, and immune checkpoint inhibitors for patients with GBM.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Immune effects of temozolomide as an immunomodulatory agent. Temozolomide is able to affect immune function in brain tumor patients through both effects on tumor cells and direct effects on immune cells. The tumor cell death that results from temozolomide allows release of tumor antigens that can be presented by dendritic cells (DCs). Additionally, temozolomide treatment results in cytoplasmic accumulation of antigen peptides in tumor cells, allowing for better recognition by immune cells. The effects of temozolomide on host immunity includes lymphopenia. This phenomenon can be leveraged. The homeostatic lymphocyte recovery after the temozolomide-induced lymphopenia is a window during which antigen-specific T cells can be rapidly expanded. Additionally, temozolomide may deplete or expand regulatory T cells (Tregs) which are immunosuppressive depending on the dosing regimen.

References

    1. Abernathy A. Bristol-Myers Squibb announces results from CheckMate-143, a phase 3 study of Opdivo (nivolumab) in patients with glioblastoma multiforme. https://news.bms.com/press-release/bmy/bristol-myers-squibb-announces-re.... Accessed April 3, 2017. New York City, NY: Bristol-Myers Squibb; 2017.
    1. Chinot OL, Wick W, Mason W, et al. . Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–722. - PubMed
    1. Gilbert MR, Dignam JJ, Armstrong TS, et al. . A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708. - PMC - PubMed
    1. Ma DJ, Galanis E, Anderson SK, et al. . A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro Oncol. 2015;17(9):1261–1269. - PMC - PubMed
    1. Wolchok JD, Kluger H, Callahan MK, et al. . Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–133. - PMC - PubMed

Publication types

MeSH terms

Substances