Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family
- PMID: 29736015
- PMCID: PMC6317521
- DOI: 10.1038/s41588-018-0115-y
Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family
Abstract
DNA methylation is essential for gene regulation, transposon silencing and imprinting. Although the generation of specific DNA methylation patterns is critical for these processes, how methylation is regulated at individual loci remains unclear. Here we show that a family of four putative chromatin remodeling factors, CLASSY (CLSY) 1-4, are required for both locus-specific and global regulation of DNA methylation in Arabidopsis thaliana. Mechanistically, these factors act in connection with RNA polymerase-IV (Pol-IV) to control the production of 24-nucleotide small interfering RNAs (24nt-siRNAs), which guide DNA methylation. Individually, the CLSYs regulate Pol-IV-chromatin association and 24nt-siRNA production at thousands of distinct loci, and together, they regulate essentially all 24nt-siRNAs. Depending on the CLSYs involved, this regulation relies on different repressive chromatin modifications to facilitate locus-specific control of DNA methylation. Given the conservation between methylation systems in plants and mammals, analogous pathways may operate in a broad range of organisms.
Conflict of interest statement
Competing Financial Interests Statement
The authors declare no competing interests.
Figures






References
-
- Haag JR & Pikaard CS Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 12, 483–92 (2011). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases