Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun;3(6):708-717.
doi: 10.1038/s41564-018-0159-x. Epub 2018 May 7.

Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton-Valentine leukocidin

Affiliations

Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton-Valentine leukocidin

Angelino T Tromp et al. Nat Microbiol. 2018 Jun.

Erratum in

Abstract

The staphylococcal bi-component leukocidins Panton-Valentine leukocidin (PVL) and γ-haemolysin CB (HlgCB) target human phagocytes. Binding of the toxins' S-components to human complement C5a receptor 1 (C5aR1) contributes to cellular tropism and human specificity of PVL and HlgCB. To investigate the role of both leukocidins during infection, we developed a human C5aR1 knock-in (hC5aR1KI) mouse model. HlgCB, but unexpectedly not PVL, contributed to increased bacterial loads in tissues of hC5aR1KI mice. Compared to humans, murine hC5aR1KI neutrophils showed a reduced sensitivity to PVL, which was mediated by the toxin's F-component LukF-PV. By performing a genome-wide CRISPR-Cas9 screen, we identified CD45 as a receptor for LukF-PV. The human-specific interaction between LukF-PV and CD45 provides a molecular explanation for resistance of hC5aR1KI mouse neutrophils to PVL and probably contributes to the lack of a PVL-mediated phenotype during infection in these mice. This study demonstrates an unsuspected role of the F-component in driving the sensitivity of human phagocytes to PVL.

PubMed Disclaimer

Comment in

  • A common approach to toxin specificity.
    Lee B, Bubeck Wardenburg J. Lee B, et al. Nat Microbiol. 2018 Jun;3(6):644-645. doi: 10.1038/s41564-018-0173-z. Nat Microbiol. 2018. PMID: 29795538 No abstract available.

References

    1. Thwaites, G. E. et al. Clinical management of Staphylococcus aureus bacteraemia. Lancet Infect. Dis. 11, 208–222 (2011). - DOI - PubMed
    1. Deleo, F. R., Otto, M., Kreiswirth, B. N. & Chambers, H. F. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375, 1557–1568 (2010). - DOI - PubMed - PMC
    1. Fowler, V. G. et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309, 1368–1378 (2013). - DOI - PubMed
    1. Spaan, A. N., Surewaard, B. G., Nijland, R. & van Strijp, J. A. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu. Rev. Microbiol. 67, 629–650 (2013). - DOI - PubMed
    1. Alonzo, F. III. & Torres, V. J. The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol. Mol. Biol. Rev. 78, 199–230 (2014). - DOI - PubMed - PMC

Publication types

MeSH terms

LinkOut - more resources