Effects of electrical stimulus composition on cardiac electrophysiology in a rodent model of electroconvulsive therapy
- PMID: 29736058
- PMCID: PMC5914257
- DOI: 10.4103/psychiatry.IndianJPsychiatry_88_18
Effects of electrical stimulus composition on cardiac electrophysiology in a rodent model of electroconvulsive therapy
Abstract
Background: No electroconvulsive therapy (ECT) study on humans or in animal models has so far examined whether differently composed electrical stimuli exert different cardiac electrophysiological effects at constant electrical dose. The subject is important because cardiac electrophysiological changes may provide indirect information about ECT seizure quality as modulated by stimulus composition.
Materials and methods: Adult female Wistar rats (n = 20/group) received fixed, moderately suprathreshold (18 mC) electrical stimuli. This stimulus in each of eight groups was formed by varying pulse amplitude, pulse width, pulse frequency, and stimulus duration. The electrocardiogram was recorded, and time and frequency domain variables were examined in 30 s epochs in preictal (30 s before electroconvulsive shock [ECS]), early postictal (starting 15 s after stimulation), and late postictal (5 h after ECS) periods. Alpha for statistical significance was set at P < 0.01 to adjust for multiple hypothesis testing.
Results: Cardiac electrophysiological indices in the eight groups did not differ significantly at baseline. At both early and late postictal time points, almost no analysis yielded statistically significant differences between groups for four time domain variables, including heart rate and standard deviation of R-R intervals, and for six frequency domain variables, including low-frequency power, high-frequency power, and total power.
Conclusions: Cardiac electrophysiological measures may not be helpful to identify differences in seizure quality that are driven by differences in the composition of electrical stimuli at constant, moderately suprathreshold electrical dose. The generalization of this conclusion to threshold electrical doses and to human contexts requires a study.
Keywords: Electrical dose; electrocardiogram; electroconvulsive shocks; electroconvulsive therapy; electroencephalogram; heart rate variability; rats.
Conflict of interest statement
There are no conflicts of interest.
References
-
- Sackeim HA, Decina P, Kanzler M, Kerr B, Malitz S. Effects of electrode placement on the efficacy of titrated, low-dose ECT. Am J Psychiatry. 1987;144:1449–55. - PubMed
-
- Sackeim H, Decina P, Prohovnik I, Malitz S. Seizure threshold in electroconvulsive therapy. Effects of sex, age, electrode placement, and number of treatments. Arch Gen Psychiatry. 1987;44:355–60. - PubMed
-
- Sackeim HA, Decina P, Portnoy S, Neeley P, Malitz S. Studies of dosage, seizure threshold, and seizure duration in ECT. Biol Psychiatry. 1987;22:249–68. - PubMed
-
- Sackeim HA, Prudic J, Devanand DP, Kiersky JE, Fitzsimons L, Moody BJ, et al. Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N Engl J Med. 1993;328:839–46. - PubMed
-
- Sackeim HA, Prudic J, Devanand DP, Nobler MS, Lisanby SH, Peyser S, et al. A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities. Arch Gen Psychiatry. 2000;57:425–34. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
