Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct:131:53-57.
doi: 10.1016/j.plaphy.2018.04.036. Epub 2018 Apr 27.

CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory

Affiliations

CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory

Kenichi Shibuya et al. Plant Physiol Biochem. 2018 Oct.

Abstract

Flower longevity is one of the most important traits in ornamental plants. In Japanese morning glory (Ipomoea nil), EPHEMERAL1 (EPH1), a NAC transcription factor, is reportedly a key regulator of petal senescence. CRISPR/Cas9-mediated targeted mutagenesis is a powerful tool for crop breeding as well as for biological research. Here we report the application of CRISPR/Cas9 technology to targeted mutagenesis of the EPH1 gene in I. nil. Three regions within the EPH1 gene were simultaneously targeted by a single binary vector containing three single-guide RNA cassettes. We selected eight T0 transgenic plants containing the transferred DNA (T-DNA). Cleaved amplified polymorphic sequence (CAPS) analysis revealed that mutations occurred at single or multiple target sites in all eight plants. These plants harbored various mutations consisting of single base insertions and/or deletions of a single or more than two bases at the target sites. Several mutations generated at target sites were inherited in the T1 progeny with or without T-DNA insertions. Mutant plants in the T1 generations exhibited a clear delay in petal senescence. These results confirm that CRISPR/Cas9 technology can efficiently induce mutations in a target I. nil gene and that EPH1 plays a crucial role in the regulation of petal senescence. The eph1 mutants obtained in this study will be a useful tool for the elucidation of regulatory mechanisms in petal senescence.

Keywords: CRISPR/Cas9; Flower; NAC transcription factor; Senescence.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources