NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius
- PMID: 29739976
- PMCID: PMC5940873
- DOI: 10.1038/s41598-018-25361-4
NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius
Abstract
Ketol-acid reductoisomerase (KARI) is a bifunctional enzyme in the second step of branched-chain amino acids biosynthetic pathway. Most KARIs prefer NADPH as a cofactor. However, KARI with a preference for NADH is desirable in industrial applications including anaerobic fermentation for the production of branched-chain amino acids or biofuels. Here, we characterize a thermoacidophilic archaeal Sac-KARI from Sulfolobus acidocaldarius and present its crystal structure at a 1.75-Å resolution. By comparison with other holo-KARI structures, one sulphate ion is observed in each binding site for the 2'-phosphate of NADPH, implicating its NADPH preference. Sac-KARI has very high affinity for NADPH and NADH, with K M values of 0.4 μM for NADPH and 6.0 μM for NADH, suggesting that both are good cofactors at low concentrations although NADPH is favoured over NADH. Furthermore, Sac-KARI can catalyze 2(S)-acetolactate (2S-AL) with either cofactor from 25 to 60 °C, but the enzyme has higher activity by using NADPH. In addition, the catalytic activity of Sac-KARI increases significantly with elevated temperatures and reaches an optimum at 60 °C. Bi-cofactor utilization and the thermoactivity of Sac-KARI make it a potential candidate for use in metabolic engineering or industrial applications under anaerobic or harsh conditions.
Conflict of interest statement
The authors declare no competing interests.
Figures



Similar articles
-
Uncovering rare NADH-preferring ketol-acid reductoisomerases.Metab Eng. 2014 Nov;26:17-22. doi: 10.1016/j.ymben.2014.08.003. Epub 2014 Aug 27. Metab Eng. 2014. PMID: 25172159
-
Cofactor specificity motifs and the induced fit mechanism in class I ketol-acid reductoisomerases.Biochem J. 2015 Jun 15;468(3):475-84. doi: 10.1042/BJ20150183. Epub 2015 Apr 7. Biochem J. 2015. PMID: 25849365 Free PMC article.
-
General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH.Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):10946-51. doi: 10.1073/pnas.1306073110. Epub 2013 Jun 17. Proc Natl Acad Sci U S A. 2013. PMID: 23776225 Free PMC article.
-
Methods for library-scale computational protein design.Methods Mol Biol. 2014;1216:129-59. doi: 10.1007/978-1-4939-1486-9_7. Methods Mol Biol. 2014. PMID: 25213414 Review.
-
Thermoacidophilic Sulfolobus species as source for extremozymes and as novel archaeal platform organisms.Curr Opin Biotechnol. 2019 Oct;59:71-77. doi: 10.1016/j.copbio.2019.02.012. Epub 2019 Mar 12. Curr Opin Biotechnol. 2019. PMID: 30875666 Review.
Cited by
-
The effects of vegetable pickling conditions on the dynamics of microbiota and metabolites.PeerJ. 2021 Apr 6;9:e11123. doi: 10.7717/peerj.11123. eCollection 2021. PeerJ. 2021. PMID: 33868815 Free PMC article.
-
Characterization of a class II ketol-acid reductoisomerase from Mycobacterium tuberculosis.RSC Adv. 2022 Apr 6;12(17):10540-10544. doi: 10.1039/d1ra08876a. eCollection 2022 Mar 31. RSC Adv. 2022. PMID: 35425013 Free PMC article.
-
Structural Rearrangements of a Dodecameric Ketol-Acid Reductoisomerase Isolated from a Marine Thermophilic Methanogen.Biomolecules. 2021 Nov 11;11(11):1679. doi: 10.3390/biom11111679. Biomolecules. 2021. PMID: 34827677 Free PMC article.
-
Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules.Front Bioinform. 2021 Dec 8;1:788308. doi: 10.3389/fbinf.2021.788308. eCollection 2021. Front Bioinform. 2021. PMID: 36303748 Free PMC article. Review.
-
A Ketol-Acid Reductoisomerase Inhibitor That Has Antituberculosis and Herbicidal Activity.Chemistry. 2025 Jun 26;31(36):e202501158. doi: 10.1002/chem.202501158. Epub 2025 Jun 9. Chemistry. 2025. PMID: 40386891 Free PMC article.
References
-
- Armstrong FB, Hedgecock CJR, Reary JB, Whitehouse D, Crout DHG. Stereochemistry of the reductoisomerase and αβ-dihydroxyacid dehydratase-catalysed steps in valine and isoleucine biosynthesis. Observation of a novel tertiary ketol rearrangement. J Chem Soc Chem Commun. 1974;9:351–352. doi: 10.1039/C39740000351. - DOI
-
- Armstrong FB, Lipscomb EL, Crout DHG, Mitchell MB, Prakash SR. Biosynthesis of valine and isoleucine: synthesis and biological activity of (2S)-α-acetolactic acid (2-hydroxy-2-methyl-3-oxobutanoic acid), and (2R)- and (2S)-α-acetohydroxybutyric acid (2-ethyl-2-hydroxy-3-oxobutanoic acid) J Chem Soc Perkin Trans. 1983;1:1197–1201. doi: 10.1039/P19830001197. - DOI
-
- Hill RK, Sawada S, Arfin SM. Stereochemistry of valine and isoleucine biosynthesis: IV. Synthesis, configuration, and enzymatic specificity of α-acetolactate and α-aceto-α-hydroxybutyrate. Bioorg Chem. 1979;8:175–189. doi: 10.1016/0045-2068(79)90003-8. - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources