Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Nov;65(5):2318-25.
doi: 10.1152/jappl.1988.65.5.2318.

Influence of spaceflight on rat skeletal muscle

Collaborators, Affiliations

Influence of spaceflight on rat skeletal muscle

T P Martin et al. J Appl Physiol (1985). 1988 Nov.

Abstract

The size, succinate dehydrogenase (SDH) and alpha-glycerolphosphate dehydrogenase (GPD) activities, and alkaline myofibrillar adenosinetriphosphatase (ATPase) staining properties were determined from quantitative histochemical analyses of single fibers from five hindlimb muscles of six male rats exposed to a 7-day National Aeronautics and Space Administration spaceflight mission (SL-3). These same properties were determined in a group of ground-based control rats housed under simulated environmental conditions. The wet weight of each of the flight muscles was significantly reduced relative to control. However, the loss of mass varied from 36% in the soleus to 15% in the extensor digitorum longus. The cross-sectional areas of fibers in the flight muscles also were reduced, except for the dark ATPase fibers in the medial gastrocnemius. The greatest relative fiber atrophy occurred in the muscles with the highest proportion of light ATPase fibers. An increase in the percentage of dark ATPase fibers also was observed in flight muscles with a predominance of light ATPase fibers. Also, there was an increase in the biochemically determined myofibrillar ATPase activity of tissue sections of the flight soleus. No changes in histochemical or biochemical measures of ATPase activity were observed in the flight extensor digitorum longus. In general, the SDH activity of flight muscles was maintained, whereas GPD activity either was maintained or increased. Based on a metabolic profile of ATPase, SDH, and GPD, there was an increase in the proportion of fast oxidative-glycolytic fibers in some muscles.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources