Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep;32(9):1795-1802.
doi: 10.1002/ptr.6113. Epub 2018 May 11.

Apigenin inhibits growth of the Plasmodium berghei and disrupts some metabolic pathways in mice

Affiliations

Apigenin inhibits growth of the Plasmodium berghei and disrupts some metabolic pathways in mice

Mahdi Amiri et al. Phytother Res. 2018 Sep.

Abstract

Due to the challenges in the control, prevention, and eradication of parasitic diseases like malaria, there is an urgent need to discover new therapeutic agents. Plant-derived medicines may open new ways in the field of antiplasmodial therapy. This study is aimed to investigate the toxicity and in vivo antiplasmodial activity of apigenin, a dietary flavonoid. Apigenin cytotoxicity was investigated on Huh7 cell line, brine shrimp (Artemia salina) larva, and human red blood cells. In vivo toxicity of apigenin was assessed by metabolomics approaches. Apigenin exhibited significant suppression of parasitemia in a dose-dependent manner; it suppressed Plasmodium berghei growth by 69.74%, 50.3%, and 49.23% at concentrations of 70, 35, and 15 mg/kg/day, respectively. The IC50 value for apigenin after 24 hr exposure to Huh7 cells was 225 μg/ml. Apigenin did not show noticeable toxicity on A. salina and also on the membrane integrity of red blood cells. After 24 hr exposure of mice to apigenin, alterations were seen in the metabolism of glucocorticoids and mineralocorticoids, bile acid metabolism (alternative pathway), sulfur metabolism, bile acid metabolism, metabolism of estrogens and androgens, cholesterol catabolism, and biosynthesis of cholesterol. These findings indicate that apigenin has potential in vivo antiplasmodial activity against P. berghei infected mice with high selectivity against malaria, but it can disrupt some metabolic pathways in mice.

Keywords: Plasmodium berghei; apigenin; cytotoxicity; metabolic pathways.

PubMed Disclaimer

LinkOut - more resources