Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan;11(1):63-78.
doi: 10.2217/pme.13.96.

Whole-exome sequencing: opportunities in pediatric endocrinology

Affiliations

Whole-exome sequencing: opportunities in pediatric endocrinology

Mark E Samuels et al. Per Med. 2014 Jan.

Abstract

Pediatric endocrinology services see a wide variety of patients with diverse clinical symptoms, including disorders of growth, metabolism, bone and sexual development. Molecular diagnosis plays an important role in this branch of medicine. Traditional PCR-based Sanger sequencing is a mainstay format for molecular testing in pediatric cases despite its relatively high cost, but the large number of gene defects associated with the various endocrine disorders renders gene-by-gene testing increasingly unattractive. Using new high-throughput sequencing technologies, whole genomes, whole exomes or candidate-gene panels (targeted gene sequencing) can now be cost-effectively sequenced for endocrine patients. Based on our own recent experiences with exome sequencing in a research context, we describe the general clinical ascertainment of relevant pediatric endocrine patients, compare different formats for next-generation sequencing and provide examples. Our view is that protocols involving next-generation sequencing should now be considered as an appropriate component of routine clinical diagnosis for relevant patients.

Keywords: adrenals; endocrinology; exome sequencing; pituitary; targeted gene sequencing; thyroid.

PubMed Disclaimer

LinkOut - more resources