Updates to Clostridium difficile Spore Germination
- PMID: 29760211
- PMCID: PMC6060349
- DOI: 10.1128/JB.00218-18
Updates to Clostridium difficile Spore Germination
Abstract
Germination of Clostridium difficile spores is a crucial early requirement for colonization of the gastrointestinal tract. Likewise, C. difficile cannot cause disease pathologies unless its spores germinate into metabolically active, toxin-producing cells. Recent advances in our understanding of C. difficile spore germination mechanisms indicate that this process is both complex and unique. This review defines unique aspects of the germination pathways of C. difficile and compares them to those of two other well-studied organisms, Bacillus anthracis and Clostridium perfringensC. difficile germination is unique, as C. difficile does not contain any orthologs of the traditional GerA-type germinant receptor complexes and is the only known sporeformer to require bile salts in order to germinate. While recent advances describing C. difficile germination mechanisms have been made on several fronts, major gaps in our understanding of C. difficile germination signaling remain. This review provides an updated, in-depth summary of advances in understanding of C. difficile germination and potential avenues for the development of therapeutics, and discusses the major discrepancies between current models of germination and areas of ongoing investigation.
Keywords: Clostridium difficile; germination; spores.
Copyright © 2018 American Society for Microbiology.
Figures




Similar articles
-
Revisiting the Role of Csp Family Proteins in Regulating Clostridium difficile Spore Germination.J Bacteriol. 2017 Oct 17;199(22):e00266-17. doi: 10.1128/JB.00266-17. Print 2017 Nov 15. J Bacteriol. 2017. PMID: 28874406 Free PMC article.
-
Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor.J Bacteriol. 2015 Dec 14;198(5):777-86. doi: 10.1128/JB.00908-15. J Bacteriol. 2015. PMID: 26668265 Free PMC article.
-
Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores.PLoS Pathog. 2017 Jul 13;13(7):e1006443. doi: 10.1371/journal.ppat.1006443. eCollection 2017 Jul. PLoS Pathog. 2017. PMID: 28704538 Free PMC article.
-
Potential use of inhibitors of bacteria spore germination in the prophylactic treatment of anthrax and Clostridium difficile-associated disease.Expert Rev Anti Infect Ther. 2007 Oct;5(5):783-92. doi: 10.1586/14787210.5.5.783. Expert Rev Anti Infect Ther. 2007. PMID: 17914913 Review.
-
Updates on Clostridium difficile spore biology.Anaerobe. 2017 Jun;45:3-9. doi: 10.1016/j.anaerobe.2017.02.018. Epub 2017 Feb 22. Anaerobe. 2017. PMID: 28254263 Review.
Cited by
-
The requirement for co-germinants during Clostridium difficile spore germination is influenced by mutations in yabG and cspA.PLoS Pathog. 2019 Apr 3;15(4):e1007681. doi: 10.1371/journal.ppat.1007681. eCollection 2019 Apr. PLoS Pathog. 2019. PMID: 30943268 Free PMC article.
-
Hyperthermophilic endospores germinate and metabolize organic carbon in sediments heated to 80°C.Environ Microbiol. 2022 Nov;24(11):5534-5545. doi: 10.1111/1462-2920.16167. Epub 2022 Sep 13. Environ Microbiol. 2022. PMID: 36100999 Free PMC article.
-
The impact of dietary fibers on Clostridioides difficile infection in a mouse model.Front Cell Infect Microbiol. 2022 Nov 9;12:1028267. doi: 10.3389/fcimb.2022.1028267. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 36439215 Free PMC article.
-
Single-spore germination analyses reveal that calcium released during Clostridioides difficile germination functions in a feedforward loop.mSphere. 2023 Aug 24;8(4):e0000523. doi: 10.1128/msphere.00005-23. Epub 2023 Jun 20. mSphere. 2023. PMID: 37338207 Free PMC article.
-
Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology.Nat Rev Gastroenterol Hepatol. 2021 Jan;18(1):67-80. doi: 10.1038/s41575-020-0350-4. Epub 2020 Aug 25. Nat Rev Gastroenterol Hepatol. 2021. PMID: 32843743 Review.
References
-
- Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC. 2015. Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834. doi:10.1056/NEJMoa1408913. - DOI - PMC - PubMed
-
- Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL, Wilcox MH, EUCLID Study Group. 2016. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill 21(29):pii=30294. doi:10.2807/1560-7917.ES.2016.21.29.30294. - DOI - PubMed
-
- Kuijper EJ, Coignard B, Tull P, ESCMID Study Group for Clostridium difficile, EU Member States, European Centre for Disease Prevention and Control . 2006. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12(Suppl 6):S2–S18. doi:10.1111/j.1469-0691.2006.01580.x. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources