Transcriptomic analysis of the harvested endothelial cells in a swine model of mechanical thrombectomy
- PMID: 29761220
- PMCID: PMC5995995
- DOI: 10.1007/s00234-018-2033-1
Transcriptomic analysis of the harvested endothelial cells in a swine model of mechanical thrombectomy
Abstract
Purpose: In mechanical thrombectomy (MT) for ischemic stroke, endothelial cells (ECs) from intracranial blood vessels adhere to the stent retriever device and can be harvested. However, understanding the molecular biology and the role of the endothelium in different pathological conditions remains insufficient. The purpose of the study was to characterize and analyze the molecular aspect of harvested ECs using cell culture and transcriptomic techniques in an MT swine model relevant to clinical ischemic stroke.
Methods: In swine, preformed thrombi were injected into the external carotid and subclavian arteries to occlude their branches. MT was performed according to clinical routine. The stent retriever device and thrombus were treated with cell dissociation buffer. The resulting cell suspension was analyzed by immunohistochemistry and was cultured. Cultured cells were analyzed using single-cell RNA sequencing (scRNA-seq) after fluorescence-activated cell sorting (FACS).
Results: A total number of 37 samples were obtained containing CD31-positive cells. Cell culture was successful in 90% of samples, and the cells expressed multiple typical EC protein markers. Eighty-nine percent of the sorted cells yielded high-quality transcriptomes, and single-cell transcriptomes from cultured cells showed that they expressed typical endothelial gene patterns. Gene expression analysis of ECs from an occluded artery did not show distinctive clustering into subtypes.
Conclusion: ECs harvested during MT can be cultured and analyzed using single-cell transcriptomic techniques. This analysis can be implemented in clinical practice to study the EC gene expression of comorbidities, such as hypertension, diabetes mellitus, and metabolic syndrome, in patients suffering from acute ischemic stroke.
Keywords: Cell culture; Endothelial cells; Thrombectomy; Transcriptomic analysis.
Conflict of interest statement
Funding
This study was funded by the Söderberg Foundations, Familjen Erling Perssons stiftelse, Karolinska Institutet and Karolinska University Hospital.
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed in accordance with the Karolinska Institute guidelines for experiments on large animals and were approved by the ethics committee (Norra Stockholms Djurförsöksetiska nämnd, dnr N87/15 and N162/16).
Informed consent
This article does not contain any studies with human participants performed by any of the authors.
Figures





References
-
- Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R, International Brachial Artery Reactivity Task F Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–265. doi: 10.1016/S0735-1097(01)01746-6. - DOI - PubMed
-
- Mullen MJ, Clarkson P, Donald AE, Thomson H, Thorne SA, Powe AJ, Furuno T, Bull T, Deanfield JE. Effect of enalapril on endothelial function in young insulin-dependent diabetic patients: a randomized, double-blind study. J Am Coll Cardiol. 1998;31(6):1330–1335. doi: 10.1016/S0735-1097(98)00099-0. - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical